
	
	

	
ANALYZING	WILDLIFE	TELEMETRY	DATA	IN	R	

	
By	John	Leonard	

	
	
	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2	
	

TABLE	OF	CONTENTS	
	
INTRODUCTION		……….3	
USING	RSTUDIO	……….4	
INSTALLING	R	AND	RSTUDIO	……5	
INSTALLING	AND	LOADING	REQUIRED	PACKAGES	……………………………………………………………………………………7	
LOADING	R	CODE	INTO	RSTUDIO	……….7	
FORMATTING	INPUT	LOCATION	DATA	…………………………………………………………………………………………………….8	
CREATING	A	LIST	OF	SPATIAL	POINTS	DATA	FRAMES	……………………………………………………………………………….9	
PLOT	POINTS	TO	REMOVE	OUTLIERS	……………………………………………………………………………………………………..13	
REPROJECTING	POINTS	…….16	
EXPORTING	POINTS	AS	SHAPEFILES	……………………………………………………………………………………………………….17	
MAKING	MINIMUM	CONVEX	POLYGON	HOME	RANGES	………………………………………………………………………..18	
MAKING	KERNEL	HOME	RANGES	IN	ADEHABITATHR	……………………………………………………………………………..20	
MAKING	KERNEL	HOME	RANGES	IN	RHR	……………………………………………………………………………………………….25	
ADDING	FIELDS	TO	GPS	LOCATIONS	FILES	……………………………………………………………………………………………..27	
BROWNIAN	BRIDGE	MOVEMENT	MODELS	…………………………………………………………………………………………….29	
FINDING	CODES	FOR	COORDINATE	REFERENCE	SYSTEMS	……………………………………………………………………..35	
SPECIFYING	DATE	AND	TIME	FORMAT	…………………………………………………………………………………………………..37	
TROUBLESHOOTING	……38	
	
APPENDIX	A	………40	
	
Install	Required	Packages	………40	
Create	List	of	Spatial	Points	Data	Frames	………………………………………………………………………………………………41	
Plot	Points	to	Remove	Outliers	……43	
Re-project	Points	to	UTM	………44	
Export	Points	……45	
Create	MCP	………46	
Create	KDE	adehabitatHR	………47	
Create	KDE	rhr	……….48	
Create	New	Fields	……….49	
Create	BBMM	………..51	
	
APPENDIX	B	………53	
	
GPS_A	……53	
GPS_B	……54	
GPS_C	……55	
GPS_D	……56	
GPS_E	…….57	
	
	
	
	
	

3	
	

INTRODUCTION	

R	has	become	the	dominant	platform	for	data	manipulation	and	analysis	in	wildlife	science,	yet	

it	has	a	reputation	among	wildlife	scientists	as	being	counterintuitive	and	difficult	to	use.	There	are	a	

number	of	introductory	R	manuals	available,	but	strangely,	very	few	people	seem	to	be	able	to	learn	to	

code	in	R	by	reading	these	manuals.	Resources	available	for	learning	R	tend	to	fall	into	two	categories.	

The	first	category	consists	of	basic	introductory	texts	with	names	like	“Introduction	to	R”	and	“R	for	

Dummies”.	These	books	attempt	to	give	beginners	an	overview	of	all	the	functionalities	of	R,	yet	they	

are	often	overly	broad,	tending	to	inundate	the	user	with	unnecessary	information	and	giving	little	in	

the	way	of	immediately	useful	techniques.	After	reading	one	of	these	texts	few	people	are	able	to	

immediately	start	using	R	to	analyze	their	own	data.		

At	the	other	end	of	the	spectrum	are	vignettes	developed	for	specific	packages	relevant	to	

wildlife	scientists,	such	as	“adehabitatHR”.	In	my	opinion,	working	through	these	vignettes,	complete	

with	sample	data,	is	a	better	use	of	time	than	reading	the	“Introduction	to	R”	books.	However,	these	

vignettes	tend	to	have	some	major	shortcomings.	For	one,	the	sample	data	is	almost	always	formatted	

in	some	structure	that	makes	it	work	seamlessly	with	the	package’s	functions,	and	little	information	is	

typically	provided	about	how	to	put	one’s	raw	data	in	the	correct	format.	Additionally,	the	package	

vignettes	typically	assume	that	the	user	wants	to	conduct	all	analyses	in	R,	rather	than	use	a	GIS	

program	such	as	ArcGIS	to	view	shapefiles	and	produce	the	final	maps.	In	my	experience,	most	people	

would	like	to	learn	to	use	R	to	automate	tedious	and	time	consuming	tasks,	but	still	plan	to	use	ArcGIS	

for	making	visually-appealing	representations	of	their	data.	

This	manual	falls	somewhere	in-between	the	introductory	texts	and	package	vignettes.	It	

describes	a	workflow	for	manipulating	and	processing	large	amounts	of	animal	location	data	obtained	

from	GPS	or	VHF	radio	collars.	It	uses	existing	packages	to	perform	operations	such	as	home	range	

estimation,	but	it	allows	these	functions	to	be	applied	to	a	large	number	of	files	quickly	and	efficiently.	

4	
	

As	such,	the	code	provided	in	this	manual	does	not	constitute	a	package,	but	rather	an	integrated	

workflow	for	using	existing	packages.	My	goal	was	to	write	a	manual	that	allows	a	researcher	with	no	

previous	experience	coding	in	R	to	perform	all	functions	described	in	this	manual	on	his	or	her	datasets.		

I	therefore	tried	to	leave	nothing	out	of	this	manual,	describing	the	entire	workflow	from	modifying	the	

original	telemetry	files	to	exporting	shapefiles.	For	someone	comfortable	with	R	this	will	probably	be	

overkill,	but	for	a	first	time	user	I	believe	this	level	of	detail	is	essential.	

In	my	experience,	the	best	way	to	learn	to	use	R	is	to	immediately	start	analyzing	your	own	data.	

If	you	know	a	few	basic	functions	that	are	actually	useful	and	produce	meaningful	results	you	will	be	

well	on	your	way	to	making	R	work	for	you.	With	that	in	mind,	this	manual	describes	a	relatively	limited	

number	of	operations	and	does	not	go	into	great	detail	explaining	how	R	works.		

My	intention	is	for	this	manual	to	be	a	stand-alone	document,	meaning	that	links	to	additional	

files	are	not	necessary.	Instead	of	providing	links	to	files	containing	the	R	code,	all	code	described	in	this	

document	can	be	found	in	Appendix	A.	Some	very	simple	sample	data	files	are	provided	as	plain	text	in	

Appendix	B.	This	is	a	rather	unconventional	approach	to	providing	example	data	and	R	code,	but	it	has	

the	advantage	of	providing	the	user	with	everything	he	or	she	needs	to	analyze	wildlife	telemetry	data	

in	a	single	document.	My	recommendation	is	to	first	use	the	sample	data	provided	in	Appendix	B	to	

work	through	the	entire	workflow	described	in	this	manual,	and	then	to	repeat	the	process	using	one’s	

own	data.	

	

USING	RSTUDIO	

Most	introductory	R	books	strongly	suggest	using	RStudio,	but	I	consider	its	use	mandatory.	It	is	

counterproductive	to	try	to	learn	R	just	using	the	base	R	GUI.	RStudio	provides	tools	for	editing	

commands	before	executing	them	in	R,	lets	the	user	view	plots	without	having	to	save	them,	and	

displays	all	objects	that	are	present	in	the	working	environment.	RStudio	provides	an	easy	way	to	access	

5	
	

and	use	R,	so	it	only	works	if	you	have	R	installed.	See	Figure	1	for	a	simple	key	to	the	different	parts	of	

the	RStudio	interface.	

	
	
INSTALLING	R	AND	RSTUDIO	

To	install	R,	go	to	https://www.r-project.org	and	follow	the	instructions	for	installing	the	latest	

version	of	R.	To	install	RStudio	go	to	https://www.rstudio.com/products/rstudio/download/	and	follow	

the	instructions	to	install	the	latest	version	of	RStudio.	These	steps	are	pretty	self-explanatory,	and	I	

have	never	run	into	any	problems	with	this.	R	is	continuously	updated,	and	it	is	probably	a	good	idea	to	

always	have	the	most	up-to-date	version	of	R	installed.	If	you	already	have	an	earlier	version	of	R	

installed	and	would	like	to	update	it,	the	easiest	way	to	do	this	is	to	copy	and	paste	the	following	code	

directly	into	the	R	GUI	(not	RStudio).	

	

installing/loading the package:
if(!require(installr)) {
install.packages("installr"); require(installr)} #load / install+load
installr

using the package:
updateR() # this will start the updating process of your R installation. It
will check for newer versions, and if one is available, will guide you
through the decisions you'd need to make.
	

	

6	
	

	
Figure	1:	Screen	capture	of	RStudio	interface	with	some	data	loaded.		

A)	Source	browser	notebook-	You	can	open	and	edit	R	scripts	in	this	window.	Nothing	happens	if	you	click	
“enter”	on	a	line	in	this	window,	though.	You	have	to	either	use	“ctrl+enter”	or	click	“Run”	to	actually	
send	a	command	to	the	Console	where	the	command	is	carried	out.	You	can	also	view	data	frames,	
matrices	and	other	objects	in	this	window.	
B)	Environment	tab-	This	shows	all	the	objects	present	in	your	working	environment.	Clicking	on	the	
“History”	tab	will	show	a	history	of	everything	you	typed	into	the	console.	For	virtually	any	project,	you	
will	be	creating	a	large	number	of	objects.	Having	an	environment	tab	that	shows	you	all	the	objects	that	
have	been	created	is	extremely	useful.	
C)	Packages	tab-	This	tab	shows	all	the	packages	that	have	been	installed.	To	load	a	particular	package,	
click	on	the	open	box	by	the	package	name.	The	other	tabs	in	this	window	are	“Files”,	“Plots”,	“Help”	and	
“Viewer”.	The	“Files”	browser	shows	the	files	and	subdirectories	of	a	given	directory.	The	“Plots”	tab	will	
let	you	scroll	through	any	plots	or	images	you	created.	The	“Help”	tab	will	show	you	the	documentation	
for	most	functions	or	packages	you	will	be	using.	The	“Viewer”	tab	is	used	to	view	local	web	content.	
D)	The	R	Console-	This	is	where	things	actually	happen.	This	is	where	you	will	run	scripts,	execute	
functions,	and	get	error	messages.	When	you	decide	to	run	some	code	that	you	typed	up	in	tab	“A”	it	will	
be	sent	down	to	tab	“D”-	the	R	console.	If	you	use	the	base	R	GUI	this	R	Console	tab	is	pretty	much	all	you	
get.	

	

	

7	
	

INSTALLING	AND	LOADING	REQUIRED	PACKAGES	

	 Packages	are	collections	of	functions	and	compiled	R	code	that	build	upon	and	expand	the	base	

functions	of	R.	In	order	to	use	a	package	you	must	first	install	the	package	and	then	load	it	into	your	R	

working	environment.	The	following	packages	are	required	to	work	through	this	manual:	“sp”,	

“lubridate”,	“rgdal”,	“maptools”,	“adehabitatHR”,	“rgdal”,	“raster”,	“BBMM”,	“lunar”,	“oce”,	and	“rhr”.	

The	first	code	block	provided	in	Appendix	A	should	install	all	packages	to	a	local	library	and	load	them	

into	the	R	working	environment.	Usually,	everything	will	work	if	you	just	highlight	the	entire	code	block	

and	run	it	in	RStudio.	You	can	check	which	R	packages	have	been	installed	by	clicking	on	the	“Packages”	

tab	in	RStudio.	This	will	open	up	a	list	of	available	packages	with	open	boxes	located	to	the	left	of	each	

box.	Clicking	on	the	box	to	fill	it	in	with	a	checkmark	will	load	that	package	into	the	working	

environment.	If	some	of	the	required	packages	fail	to	load	you	can	manually	load	them	by	clicking	on	

the	open	boxes.	If	one	or	more	packages	did	not	install	you	can	manually	install	it	through	RStudio	by	

clicking	on	Tools>Install	Packages,	and	typing	in	the	name	of	the	package.	This	will	work	for	all	packages	

except	“rhr”	which	must	be	installed	using	the	code	provided	in	the	first	code	block	of	Appendix	A.	I	

recommend	making	sure	that	all	required	packages	are	installed	and	loaded	before	trying	to	use	any	of	

the	other	code	blocks.	In	each	code	block,	I	included	a	few	lines	to	make	sure	the	required	packages	for	

that	code	block	were	installed,	but	it	is	still	probably	best	to	ensure	all	packages	are	installed	and	loaded	

at	the	very	beginning.	

	

LOADING	R	CODE	INTO	RSTUDIO	

The	workflow	I	created	for	analyzing	and	manipulating	GPS	collar	data	is	saved	as	10	different	

text	files	which	can	be	thought	of	as	“code	blocks”.		Even	though	this	workflow	is	intended	to	move	

seamlessly	through	these	code	blocks,	I	decided	to	keep	these	separate	as	I	believe	this	keeps	things	

neat	and	easier	to	use	in	RStudio.	All	10	code	blocks	are	saved	in	Appendix	A	of	this	manual.	

8	
	

To	load	these	code	blocks	into	RStudio	first	go	to	File>New	File>R	Script.	This	will	open	up	a	

blank	page	in	the	Source	browser	notebook	of	RStudio.	Next,	highlight	one	of	the	code	blocks	to	copy	

and	paste	it	into	this	blank	page.	Repeat	the	process	for	all	code	blocks,	giving	each	code	block	its	own	

tab.	You	can	then	easily	move	from	one	code	block	to	another	by	selecting	the	correct	tab.	

To	run	the	code	in	any	one	of	these	code	blocks,	simply	highlight	the	entire	page	(after	correctly	

modifying	any	user	defined	input)	and	click	“Run”	at	the	top	of	the	Source	browser	notebook.	This	will	

send	the	code	to	the	R	Console	and	execute	the	functions.	As	mentioned	in	the	introduction,	there	are	

no	additional	files	that	need	to	be	downloaded	to	use	this	manual.	All	functions	described	in	this	

document	are	provided	as	blocks	of	plain	text	in	Appendix	A.	

	

FORMATTING	INPUT	LOCATION	DATA	

The	R	code	described	in	this	manual	is	intended	to	save	time	by	automating	many	of	the	

operations	people	perform	on	animal	location	files.	For	this	to	work,	all	files	must	be	saved	as	comma	

delimited	csv	files	and	placed	in	the	same	file	folder.	The	projection	and	datum	used	should	be	identical	

for	all	files,	and	the	column	headings	specifying	x	and	y	coordinates,	and	any	date	and	time	fields,	should	

be	the	same.	Any	weird	formatting,	such	as	skipped	rows	or	single	headings	covering	multiple	columns,	

should	be	removed.	Column	headings	should	not	contain	spaces	and	should	not	begin	with	a	number.	

An	easy	way	to	format	input	files	is	to	open	each	one	in	Excel,	delete	any	extraneous	columns	or	rows,	

modify	column	headings	as	needed,	and	resave	the	file	as	a	csv	file	(Fig.	2).	

You	can	use	your	own	animal	telemetry	data	as	the	input	for	these	functions,	or	you	can	use	the	

sample	data	in	Appendix	B.		Appendix	B	contains	6	simplified	comma-delimited	files	with	animal	GPS	

data.	The	sample	files	named	“GPS_A”,	“GPS_B”,	and	“GPS_C”	contain	GPS	locations	collected	far	

enough	apart	temporally	to	be	considered	independent.	These	files	should	be	used	for	any	functions	

involving	kernel	or	minimum	convex	polygon	(MCP)	home	range	estimation.	The	sample	files	named	

9	
	

“GPS_D”	and	“GPS_E”	contain	location	points	collected	at	30-minute	intervals	and	therefore	are	highly	

auto-correlated.	These	should	be	used	for	any	functions	involving	Brownian	bridges.	To	use	the	sample	

data,	highlight	it	and	paste	it	into	a	text	editor	such	as	Notepad.	Then	save	it	with	a	“.csv”	extension	

(e.g.,	“GPS_A.csv”).	Place	all	of	these	csv	files	into	a	file	folder	containing	no	other	files.	

	

	
Figure	2:	Example	of	raw	GPS	collar	data	that	needs	to	be	modified.	Rows	2	and	3	should	be	deleted.	Any	column	
headings	with	a	space	in	them	(e.g.	“GMT	Date”)	should	be	changed	to	something	with	no	space	(e.g.,	
“GMT.Date”).	The	entire	file	then	needs	to	be	saved	as	a	comma-delimited	csv	file.	
	
	
	
CREATING	A	LIST	OF	SPATIAL	POINTS	DATA	FRAMES	

A	Spatial	Points	Data	Frame	is	a	special	class	of	R	object	that	can	be	created	using	the	package	

“sp”.	At	a	minimum,	a	Spatial	Points	Data	Frame	will	contain	defined	x	and	y	coordinates.	The	Spatial	

Points	Data	Frame	does	not	necessarily	need	to	contain	projection	information,	but	all	subsequent	

analyses	will	be	easier	if	we	do	specify	projection	information.	Spatial	Points	Data	Frames	differ	from	

10	
	

“Spatial	Points”	objects	in	that	the	former	allows	the	inclusion	of	any	number	of	non-spatial	attributes.	

This	is	convenient	if	we	want	to	later	subset	location	data	based	on	attributes	such	as	HDOP,	number	of	

satellites,	or	time	of	day.	

	 A	list	is	the	most	general	type	of	data	structure	in	R,	and	it	basically	consists	of	any	number	of	

data	objects,	of	similar	or	different	classes,	grouped	together	in	a	specific	order.	An	easy	way	to	

automate	functions	in	R	is	to	tell	R	to	apply	a	specific	set	of	commands	to	each	object	in	a	list.	I	like	to	

think	of	this	as	creating	an	assembly	line	with	your	data,	and	then	training	a	machine	to	perform	specific	

operations	on	each	object	that	is	passed	down	the	assembly	line.		

Once	the	input	GPS	files	are	formatted	correctly,	load	the	code	block	titled	“Create	List	of	Spatial	

Points	Data	Frames”	into	the	source	browser	notebook	in	RStudio.	The	first	several	lines	of	this	R	file	will	

appear	as	below:	

Create List of Spatial Points Data Frames
Animal locations must be saved as separate csv files in a single folder
Column headings for x and y coordinates and Date and Time fields must be
identical
Created by John Leonard 08_23_2016

User defined input. Modify lines below.

input = "J:/R/R for GPS collar data/Test Collar Data"
x = "Longitude" # The column name of your x coordinate
y = "Latitude" # The column name of your y coordinate
datetime.code = "dmy_HMS" #modify this using documentation in Lubridate
Datecolumn= "GMT.Date"
Timecolumn= "GMT.Time"
timezone = "UTC"
input.projection = "+init=epsg:4326"

	

The	code	falling	between	the	lines	of	hashtags	(#)	is	considered	“user	defined	input”	and	will	

need	to	be	modified.	Anything	within	quotation	marks	can	be	changed	to	reflect	the	file	folder	location,	

column	headings,	and	format	of	your	data.	Any	text	appearing	after	the	hashtags	is	only	for	explanation	

purposes	and	will	not	actually	be	run.	The	meanings	of	the	various	fields	are	provided	below:	

11	
	

“input”	refers	to	the	complete	file	pathway	where	your	GPS	locations	files	are	stored.	It	is	

important	to	note	that	forward	slashes	are	used	instead	of	back	slashes	to	separate	file	folders.	Also,	if	

you	are	storing	your	data	on	an	external	hard-drive	and	using	different	computers	each	time,	the	full	file	

pathway	may	be	different	each	time.	For	example,	depending	on	which	computer	and	USB	port	I	use,	

the	file	pathway	for	my	data	will	usually	either	start	with	a	“J”	or	an	“F”.	Make	sure	that	you	have	

permission	to	modify	the	file	folder	specified.	For	example,	you	might	need	administrator	privileges	to	

write	files	directly	to	the	C	drive	of	a	University	computer.	

“x”	is	the	column	name	for	the	x	coordinate.	Spell	this	out	exactly	as	it	appears	in	your	GPS	data	

files.	

“y”	is	the	column	name	for	the	y	coordinate.	Spell	this	out	exactly	as	it	appears	in	your	GPS	data	

files.	

“datetime.code”	is	a	code	that	specifies	the	order	in	which	day,	month,	year,	hour,	minute,	and	

second	will	appear	in	your	combined	“Date_Time”	column.	“dmy_HMS”	means:	day,	month,	year,	

(space),	hour,	minute,	second.	See	documentation	for	the	package	“lubridate”	for	more	details.	

“timezone”	–	to	fill	out	this	field	you	need	to	know	the	correct	time	zone	code	for	your	data.	

“UTC”	is	Coordinated	Universal	Time	which	is	the	time	zone	formerly	known	as	Greenwich	Mean	Time	

(GMT).	See	“lubridate”	documentation	for	more	details.	

“input.projection”-	this	is	the	most	difficult	field	to	fill	out	correctly.	It	specifies	the	coordinate	

reference	system	of	your	x	and	y	fields.	The	code	displayed	above	specifies	Latitude/Longitude	with	

decimal	degrees.	

The	next	step	is	to	highlight	the	entire	page	of	code	and	click	Run.	This	may	take	a	few	minutes	

depending	on	how	many	different	GPS	data	files	you	have.	If	all	goes	well,	the	Environment	tab	(usually	

to	the	far	right)	in	RStudio	will	be	populated	with	several	new	objects	(Fig.	3).	

	

12	
	

	
Figure	3:	Environment	tab	in	R-studio	after	importing	GPS	locations	files	and	creating	list	of	Spatial	Points	Data	
Frames.	
	

The	one	object	we	care	about	is	“newlist”	which	is	our	list	of	Spatial	Points	Data	Frames.	We	can	

click	on	the	blue	arrow	to	the	left	of	“newlist”	in	our	Environment	tab	to	see	what	is	inside	this	object	

(Fig.	4).	For	my	particular	dataset,	the	newlist	object	contains	3	Spatial	Points	Data	Frames,	each	

corresponding	to	one	of	3	individuals.	All	attributes	originally	present	in	my	data	are	listed	under	the	

“@data”	slot.	It	is	worth	spending	a	bit	of	time	looking	at	the	contents	of	newlist	in	R-studio.	Notice	that	

some	of	the	attributes	are	coded	as	Factor	classes,	whereas	others	are	coded	as	integer	or	numerical.	

The	Date.Time	field	that	we	created	is	class	POSIXct,	which	pertains	specifically	to	date/time	fields.	

Scrolling	down	under	the	Environment	tab	reveals	several	other	slots,	including	“@coords”,	

which	contains	our	coordinate	information,	and	“@proj4string”,	which	contains	projection	information.		

	

13	
	

	
Figure	4:	Viewing	structure	of	newlist	in	the	RStudio	Environment	tab.	
	
	

PLOT	POINTS	TO	REMOVE	OUTLIERS	

We	are	now	ready	to	plot	points	and	remove	any	outliers	that	may	mess	up	our	analysis.	Before	

deploying	GPS	collars,	it	is	common	for	researchers	to	turn	the	GPS	collar	on	to	acquire	a	few	fixes.	This	

usually	results	in	a	GPS	locations	file	that	contains	some	erroneous	points.	These	are	usually	pretty	easy	

to	spot	as	they	are	often	located	far	from	the	animal’s	actual	home	range.	You	can	always	remove	these	

points	in	Excel	while	you	are	formatting	your	GPS	locations	files,	or	you	can	do	it	later	in	R.	Even	if	you	

do	remove	erroneous	points	early	on	in	Excel,	it	is	still	a	good	idea	to	plot	points	to	make	sure	

everything	looks	correct	before	trying	to	generate	home	ranges.		

Load	the	code	block	named	“Plot	Points	to	Remove	Outliers”	in	the	RStudio	Source	browser	

notebook	tab.	This	code	uses	the	“newlist”	object	you	created	earlier	as	input.	To	plot	the	points	you	

just	need	to	run	the	following	3	lines	of	code:		

for (i in 1:length(newlist)){
 plot(newlist[[i]]@coords, main=names(newlist[i]))
}

14	
	

	
This	will	produce	a	unique	plot	of	points	for	each	GPS	locations	file.	The	file	name	will	be	

displayed	as	the	plot	title	and	the	x	and	y	coordinates	will	be	displayed	on	the	x	and	y	axes	(Fig.	5).	

	

	
Figure	5:	Example	plot	created	using	code	block	entitled	“Plot	points	to	remove	outliers”.	
	

	

From	the	example	displayed	in	Fig.	5	you	can	see	at	least	1	point	that	probably	shouldn’t	be	

there.	The	point	located	at	the	far	upper	left	of	the	plot	probably	resulted	from	testing	the	GPS	collar	at	

home.	You	could	go	into	Excel	and	try	to	individually	remove	these	points,	or	you	could	automate	this	

process	using	R.	

If	you	are	carrying	out	any	functions	that	have	the	potential	to	permanently	alter	your	data	it	is	

a	good	practice	to	first	make	a	copy	of	the	data.	We	will	create	a	copy	of	newlist	called	“newlist2”.	We	

will	run	some	functions	intended	to	remove	outliers	from	newlist2	and	then	plot	the	results	to	make	

15	
	

sure	it	worked.	Note	that	all	code	below	line	8	in	“Plot	points	to	remove	outliers”	needs	to	be	modified	

for	your	particular	dataset.		

There	are	a	lot	of	ways	to	modify	individual	Spatial	Points	Data	Frames	within	newlist,	but	the	

example	included	in	the	R	file	“Plot	points	to	remove	outliers”	uses	the	range	of	Latitude	and	Longitude	

values	to	accomplish	this.	For	the	sample	data,	GPS_A	(Fig.	5),	we	can	see	that	all	but	one	of	the	points	

are	located	in	the	bottom	right	corner	of	the	graph.	We	can	subset	this	file	to	include	only	points	with	

Latitude	(y	coordinate)	below	27.	This	will	effectively	remove	the	outlier	point	in	the	upper	left	corner	of	

the	graph.	For	GPS_B	(not	shown)	we	instead	set	a	minimum	value	for	Longitude	(x	coordinate).	

First make duplicate of newlist called newlist2 just to be safe

newlist2<-newlist

Modify code below to select maximum or minimum x or y values
Code below makes "27" the maximum latitude value for GPS_A

newlist2$GPS_A<-subset(newlist2$GPS_A, newlist2$GPS_A@coords[,y]<27)	

	

The	above	code	can	be	modified	to	fit	your	dataset.	The	fields	after	the	“$”	(e.g.	GPS_A,	

GPS_B)	should	be	changed	to	the	names	of	whichever	locations	files	you	want	to	work	with.	If	you	want	

to	subset	points	based	on	Latitude	you	should	still	use	“@coords[,y]”,	but	specify	whichever	

minimum	or	maximum	value	is	appropriate	for	your	data.	After	you	think	you	have	removed	the	outliers	

from	each	Spatial	Points	Data	Frame	in	your	newlist	object,	plot	the	points	again	(Fig.	6).	

	

16	
	

	
Figure	6:	Plot	of	points	for	GPS_A	after	outlier	point	has	been	removed.	
	
	

If	everything	looks	good,	you	can	convert	newlist2	back	into	newlist	with	the	following	code:		
	
newlist<-newlist2

	
You	should	be	careful	with	the	above	step,	as	you	cannot	undo	it.	If	you	want	to	modify	the	

code	in	“Plot	points	to	remove	outliers”	to	perform	more	complex	subsetting	operations,	such	as	

removing	locations	with	high	HDOP,	you	may	want	to	skip	the	above	step	and	instead	modify	all	

following	code	blocks	by	replacing	“newlist”	with	“newlist2”.	

	

REPROJECTING	POINTS	

	 The	code	to	generate	MCP	and	kernel	home	range	estimates	will	work	fine	regardless	of	the	

coordinate	system	used	for	your	input	points.	Shapefiles	will	be	generated	with	the	appropriate	

projection	and	they	will	therefore	appear	in	the	correct	locations	when	you	open	them	in	ArcGIS.	

However,	these	code	blocks	also	automatically	calculate	home	range	area	(ha.)	and	output	this	

17	
	

information	to	a	matrix.	In	order	to	do	this	correctly,	the	units	of	the	x	and	y	coordinates	must	be	in	

meters.	The	easiest	way	to	accomplish	this	is	to	change	the	coordinate	system	of	the	data	to	UTM	using	

the	code	block	“Re-project	Points	to	UTM”.	

	 After	executing	this	code,	“newlist”	will	contain	Spatial	Points	Data	Frames	with	x	and	y	

coordinates	transformed	to	the	desired	projection	and	datum	(e.g.,	UTM	NAD	83).	If	your	locations	files	

are	already	given	as	UTM	coordinates	you	can	skip	this	step	entirely.	As	long	as	you	specify	the	correct	

projection	in	the	“Create	List	of	Spatial	Points	Data	Frames”	step	they	will	be	projected	correctly.	

	

EXPORTING	POINTS	AS	SHAPEFILES	

	 Importing	text	files	into	ArcGIS	manually	and	then	converting	these	into	shapefiles	isn’t	

particularly	difficult,	but	it	is	time	consuming.	If	you	have	a	lot	of	telemetry	files	you	can	automate	the	

process	by	having	R	loop	through	each	Spatial	Points	Data	Frame	in	“newlist”	and	write	a	shapefile	for	

each	one.	To	do	this,	load	the	code	block	titled	“Export	Points”	into	the	RStudio	Source	notebook	

browser	and	simply	highlight	and	run	all	code.	The	shapefiles	will	be	written	to	your	working	directory	

and	a	“.prj”	file	specifying	projection	information	will	be	given.	The	projection	will	be	whatever	you	re-

projected	your	points	to.	If	some	of	your	columns	are	formatted	as	unusual	classes	(e.g.,	POSIXct)	they	

might	not	import	into	ArcGIS	correctly.	To	prevent	this	from	being	a	problem,	convert	any	columns	with	

questionable	classes	to	character	fields.	This	has	already	been	done	for	the	POSIXct	field	called	

“Date.Time”	with	the	following	code:	

infile$Date.Time<-as.character(infile$Date.Time)
	
	 When	you	open	the	new	points	shapefiles	in	ArcGIS	they	will	be	projected	in	whatever	

coordinate	system	you	selected	in	the	previous	step.	However,	the	default	names	given	to	the	x	and	y	

coordinates	will	not	be	correct.	If	your	original	points	were	in	Latitude/Longitude	and	you	changed	them	

18	
	

to	UTM,	the	points	will	show	up	in	the	correct	location	in	ArcGIS,	but	the	attribute	table	will	read	

Longitude_1,	and	Latitude_1	for	UTM	x	and	y	coordinates	respectively.	

	

MAKING	MINIMUM	CONVEX	POLYGON	HOME	RANGES	

If	all	outlier	points	have	been	removed	from	each	of	the	Spatial	Points	Data	Frames	inside	

“newlist”,	we	are	ready	to	generate	home	range	estimates.	Minimum	convex	polygons	(MCPs)	are	

among	the	simplest	home	range	estimators	so	we	will	start	with	those.	Load	the	R	file	called	“Create	

MCP”	into	the	Source	browser	notebook.	The	only	user	defined	input	for	this	one	is	MCP	percent	which	

is	specified	in	line	2.	Once	this	has	been	specified,	highlight	the	entire	page	of	R	code	and	click	“Run”.	

This	should	loop	through	all	sets	of	points	in	your	“newlist”	file	and	produce	a	unique	MCP	plot	for	each	

individual	(Fig.	7).	This	code	uses	the	R	package	“adehabitatHR”	to	generate	MCPs	using	the	function	

“mcp”.	This	function	is	also	present	in	the	older	R	package	“adehabitat”.	If	both	“adehabitatHR”	and	

“adehabitat”	are	loaded	into	R	this	may	lead	to	an	error	message.	Make	sure	“adehabitat”	is	not	loaded	

before	running	this	code.	

	

	
Figure	7:	Minimum	Convex	Polygon	(100%	MCP)	generated	for	GPS_A.	

19	
	

	
	

In	addition	to	producing	images	of	MCP	home	ranges	on	top	of	location	points,	this	code	

calculates	summary	statistics	for	each	individual.	This	information	is	stored	in	a	matrix	called	

“mcpresults”.	This	matrix	will	appear	as	a	newly	created	object	in	the	Environment	tab.	Click	on	it	to	

view	it	(Fig.	8).	If	the	values	under	“AREA_HA”	seem	strange	this	is	probably	because	some	coordinate	

system	other	than	UTM	has	been	specified.	You	can	still	create	home	ranges	with	other	coordinate	

systems,	but	the	area	calculations	will	be	incorrect.	

	

	
Figure	8:	Summary	statistics	for	100%	MCP	home	ranges	created	for	3	individuals.	
	
	

	 If	you	change	the	MCP	percentage	and	re-run	the	function,	it	will	draw	new	home	range	

boundaries	and	calculate	new	area	values	for	each	individual,	however,	the	file	“mcpresults”	will	be	re-

written	with	the	new	data.	To	save	the	results	file	as	a	csv	file	use	the	“write.csv”	function	as	below:	

write.csv(mcpresults, file=”mcpresults.csv”)
	
	 This	will	cause	a	new	csv	file	called	“mcpresults.csv”	to	appear	in	whatever	file	folder	was	

specified	as	your	working	directory.	This	will	be	the	file	pathway	you	entered	earlier	on	when	we	were	

creating	a	list	of	Spatial	Points	Data	Frames.	To	verify	your	working	directory,	use	the	following	

command:	

getwd()

	
This	will	print	the	full	file	pathway	of	your	working	directory.	In	my	case,	it	produces	the	

following:	

20	
	

getwd()
[1] "F:/R/R for GPS collar data/Test Collar Data"
	

	 If	you	navigate	to	this	file	folder	you	will	also	find	the	MCP	shapefiles	that	were	created.	Each	

MCP	shapefile	will	actually	consist	of	4	separate	files	with	the	following	extensions:	“.dbf”,	“.shp”,	

“.shx”,	and	“.prj”.		The	“.prj”	file	specifies	the	projection	and	is	necessary	for	the	shapefiles	you	created	

to	appear	in	the	correct	locations	when	you	import	them	into	ArcGIS.	The	names	of	the	various	files	

include	both	the	original	GPS	file	name	and	the	MCP	percent	level.	If	you	were	to	re-run	the	code	using	

a	different	MCP	percent	level	the	new	shapefiles	would	have	different	names,	allowing	you	to	

differentiate	between,	say,	100%	MCP	shapefiles	and	95%	MCP	shapefiles.	

	

	Figure	9:	Example	of	MCP	shapefiles	written	to	the	working	directory.	The	file	“GPS_A.csv”	is	the	original	file	of	
GPS	location	points.	The	other	4	files	make	up	the	100%	and	95%	MCP	shapefiles	for	this	individual.	The	
“100_MCP”	appearing	to	the	right	of	the	original	file	name	indicates	that	these	are	100%	MCP	shapefiles.		All	files	
starting	with	“GPS_A_95”	are	95%	MCP	shapefiles.	
	
	

MAKING	KERNEL	HOME	RANGES	IN	ADEHABITATHR	

	 This	code	operates	in	a	similar	way	as	the	code	to	generate	MCPs.	It	also	loops	through	all	

individuals	in	“newlist”,	and	uses	adehabitatHR	to	generate	fixed	kernel	density	home	range	estimates	

(KDE),	however,	there	are	more	input	parameters	and	you	are	more	likely	to	get	error	messages	with	

this	particular	code	block.	The	best	way	to	avoid	error	messages	is	to	make	absolutely	certain	all	

extreme	outlier	points	have	been	removed.	You	can	still	generate	MCPs	using	location	data	with	

21	
	

extreme	outliers,	but	kernel	home	range	generation	will	likely	fail	on	such	datasets.	To	create	KDE	

polygons	for	each	file	in	“newlist”	load	the	code	block	“Create	KDE	adehabitatHR”	into	the	Source	

browser	notebook	in	RStudio.	User	defined	input	for	this	set	of	code	consists	of	3	lines:	

	

User defined input. Modify lines below.

per =95 # percent utilization distribution estimated
h="href" # bandwidth setting ("href", "LSCV", or user specified number)
grid=1000
###	

	

To	specify	the	percent	density	contour	at	which	you	would	like	to	draw	the	home	range	

boundary	(i.e.,	50%	KDE,	95%	KDE,	etc.)	modify	the	number	after	“per”.	The	smoothing	parameter	(h)	

can	be	selected	using	either	the	reference	bandwidth	(href)	method	or	least	squares	cross	validation	

(LSCV).	Alternatively,	you	may	enter	a	number	for	“h”	if	you	want	to	use	the	same	smoothing	parameter	

for	all	individuals.	“Grid”	is	a	tricky	field	as	it	specifies	the	extent	of	the	picture	you	are	drawing.	If	the	

value	for	grid	is	too	small	it	will	result	in	the	following	error	message:	

Error in getverticeshr.estUD(ud, per) :
The grid is too small to allow the estimation of home-range.
You should rerun kernelUD with a larger extent parameter

	

	 If	this	happens,	you	should	re-run	the	code	with	a	larger	grid	size	(e.g.,	10,000),	although	this	

will	slow	down	calculations.	After	you	run	the	code,	the	file	folder	selected	as	your	working	directory	will	

be	populated	with	a	KDE	shapefile	for	each	individual.	As	with	the	MCP	shapefiles,	each	of	these	KDE	

shapefiles	actually	consists	of	4	separate	files,	with	the	following	extensions:	“.dbf”,	“.prj”,	“.shp”,	and	

“.shx”.		

	 The	shapefile	names	will	be	a	bit	more	complicated	as	they	will	specify	the	percent	density	

contour	for	your	home	range	polygon	and	the	bandwidth	selection	method.	For	an	example	of	the	

shapefiles	produced	by	this	code	see	Fig.	10.	

22	
	

	 	
Figure	10:	Example	output	of	code	to	create	kernel	home	range	shapefiles.	The	file	“GPS_A.csv”	is	the	original	GPS	
locations	file.	The	4	files	beginning	with	“GPS_A_50_LSCV_kernel”	are	for	the	50%	KDE	produced	using	the	LSCV	
method	of	bandwidth	selection.	The	4	files	beginning	with	“GPS_A_95_href_kernel”	are	for	the	95%	KDE	produced	
using	the	href	method	of	bandwidth	selection.	
	
	

	 The	kernel	home	range	code	also	produces	a	results	matrix	that	shows	summary	data	for	all	

home	range	polygons	created.	This	file	can	be	found	in	the	Environment	tab	in	RStudio	and	will	be	

named	“results”.	The	results	matrix	contains	ID	name,	type	of	home	range	created	(HR_TYPE),	percent	

density	contour	(KERNRL_LEVEL),	the	number	of	points	(POINTS),	the	area	of	the	home	range	in	

hectares	(AREA_HA),	the	smoothing	parameter	selected	(h_value),	and	the	method	used	to	select	the	

smoothing	parameter	(h_meth)	(Fig.	11).	

	

	
Figure	11:	Example	of	output	results	file	generated	creating	kernel	home	ranges	at	the	50%	density	contour,	using	
the	LSCV	method	of	bandwidth	selection.	
	

23	
	

	
Figure	12:	Example	of	95%	Kernel	density	home	range	created	using	the	Least	Squares	Cross	Validation	(LSCV)	
procedure	for	bandwidth	selection.	This	figure	shows	the	output	that	the	“Create_Kernel”	R	file	sends	to	the	
“Plots”	tab	in	RStudio.	
	

24	
	

	
Figure	13:	Example	of	95%	Kernel	Density	home	range	produced	using	the	reference	bandwidth	(href)	method	of	
bandwidth	selection.	Note	that	although	the	home	range	contours	are	truncated	by	the	extent	of	the	plot	area	the	
shapefiles	produced	will	be	complete.	
	
	 	

One	quirk	to	generating	kernel	home	range	estimates	with	the	above	method	is	that	you	will	

always	see	the	following	warning	message:	

Warning messages:
1: In kernelUD(newlist[[i]], h = h, kern = "bivnorm", grid = grid) :
 xy should contain only one column (the id of the animals)
id ignored

	

	 This	warning	message	is	caused	because	we	used	Spatial	Points	Data	Frames,	rather	than	Spatial	

Points	objects,	to	create	the	home	ranges	in	adehabitatHR.	I	have	experimented	with	this	extensively,	

and	have	come	to	the	conclusion	that	there	is	absolutely	nothing	wrong	with	using	Spatial	Points	Data	

Frames	with	these	functions.	If	adehabitat,	rather	than	adehabitatHR,	is	loaded	into	R	however,	it	will	

produce	an	error	message	rather	than	a	warning	message.	Error	messages	indicate	that	the	function	did	

25	
	

not	run	as	intended	and	that	something	is	seriously	wrong.	Warning	messages	indicate	that	the	function	

did	run	successfully,	but	that	there	may	be	one	or	two	irregularities	worth	examining	before	proceeding.	

	

MAKING	KERNEL	HOME	RANGES	IN	RHR	

	 The	package	“adehabitatHR”	is	one	of	the	most	popular	R	packages	for	home	range	analysis,	but	

there	are	other	options	available.	A	relatively	new	package	is	“rhr”,	which	stands	for	“Reproducible	

Home	Ranges”.	This	package	allows	you	to	generate	kernel	home	ranges	in	a	similar	manner	as	

adehabitatHR,	but	also	allows	additional	methods	of	bandwidth	estimation.	The	code	block	titled	

“Create	KDE	rhr”	through	the	objects	in	“newlist”	in	a	similar	way	as	the	other	code	blocks.	User	defined	

input	consists	of	the	following	3	lines:	

per = 50
hmeth = rhrHpi # select one (no quotes): rhrHref, rhrHlscv, rhrHpi,
rhrHrefScaled
h_meth = "rhrHpi" # Same as above but with quotations. You must specify both.
	
	

	 As	with	the	previous	code	block,	“per”	specifies	the	percent	density	contour	you	wish	to	draw	

(e.g.	50%	KDE,	95%	KDE).	The	values	“hmeth”	and	“h_meth”	specify	the	method	used	to	select	

bandwidth.	The	methods	selected	(rhrHref,	hrhHlscv,	rhrHpi,	and	rhrHrefScaled)	need	to	be	identical	for	

both	“hmeth”	and	“h_meth”,	however,	quotation	marks	must	be	placed	around	the	name	for	“h_meth”	

but	not	for	“hmeth”.	

	 After	this	has	been	accomplished,	highlight	the	code	and	click	Run.	In	the	Plot	window,	two	

different	plots	will	be	created	for	each	individual.	The	first	will	show	the	KDE	as	a	raster	with	the	

specified	kernel	level	indicated	by	a	solid	black	line	and	animal	relocation	points	given	as	small	crosses	

(Fig.	14).	The	second	plot	will	show	only	the	isopleths	drawn	for	whichever	kernel	density	contour	(per)	

was	selected	(Fig.	15).	The	isopleth	will	be	exported	as	a	shapefile,	complete	with	projection,	to	the	

working	directory	in	an	identical	manner	as	in	the	previous	code	block.	

26	
	

	 The	results	file	for	this	code	block	is	similar	to	that	created	using	the	adehabitatHR	package,	but	

with	one	additional	field.	Because	some	of	the	bandwidth	selection	methods	rely	on	two	parameters,	

making	reproducible	home	ranges	requires	two	values	to	be	saved	for	each	home	range	estimate.	These	

are	given	as	“h_value1”	and	h_value2”.	For	methods	that	require	only	one	value	(e.g.,	rhrHref)	both	

fields	will	be	present	in	the	results	file	but	they	will	be	identical	to	each	other.	For	methods	that	require	

two	values	(e.g.,	rhrHpi)	the	two	values	will	be	different.	The	results	file	will	appear	as	a	matrix	in	the	

Environment	window	with	the	name	“rhr_results”	(Fig.	16).	

	

	
Figure	14:	Kernel	density	estimate	as	a	raster	file	with	95%	density	isopleth	drawn	in	black	and	animal	relocations	
shown	as	black	crosses.	
	

27	
	

	
Figure	15:	Kernel	density	estimate,	drawn	at	the	95%	level.	
	
	
	
	

	
Figure	16:	Results	file	created	using	package	“rhr”	and	the	“rhrHpi”	method	of	bandwidth	selection.	Note	that	
“h_value1”	and	“h_value2”	are	different	because	two	unique	values	are	required	for	this	method	of	bandwidth	
selection.	
	
	

ADDING	FIELDS	TO	GPS	LOCATIONS	FILES	

In	addition	to	generating	home	range	shapefiles,	there	may	be	fields	that	you	want	to	add	to	

your	original	GPS	locations	files.	For	example,	if	your	GPS	collars	collect	coordinates	in	Latitude	

Longitude	format,	you	may	want	to	re-project	them	as	UTM	coordinates	and	display	both	coordinate	

systems	as	columns	in	the	input	file.	Additionally,	you	may	want	to	convert	time	zones	to	display	date	

and	time	both	in	Coordinated	Universal	Time	and	in	the	local	time	zone.	Perhaps	you	want	a	robust	and	

ecologically-meaningful	way	of	separating	night	from	day	using	the	sun’s	azimuth	above	the	earth.		

28	
	

	 The	code	block	“Create	New	Fields”	is	the	most	customizable	code	block	in	this	manual.	The	

functions	I	included	are	mainly	intended	to	provide	examples	of	the	types	of	operations	that	can	be	

automated	using	R.	I	would	encourage	anyone	with	a	bit	of	experience	in	R	to	play	around	with	this	to	

generate	new	fields	for	their	particular	datasets.	The	basic	process	for	adding	a	new	field	to	all	location	

files	is	to	insert	a	line	into	the	“for”	loop,	somewhere	between	lines	33	and	49.	The	name	of	the	new	

field	appears	to	the	right	of	the	“$”,	after	“infile”.	The	arguments	for	the	function	you	are	running	will	be	

located	to	the	right	of	the	“<-“	on	that	line.	It	takes	some	practice	to	get	this	working	for	complicated	

functions,	but	it	is	worth	learning.	

Before	using	this	code,	a	few	important	points	need	to	be	made.	First,	the	function	I	created	to	

calculate	travel	distance	uses	the	Pythagorean	theorem.	Therefore,	it	can	only	be	used	with	Cartesian	

coordinate	systems,	such	as	UTM.	If	you	re-project	points	from	Latitude-Longitude	to	UTM,	the	code	will	

work	fine	without	modification.	Secondly,	the	function	that	calculates	sun	azimuth	requires,	as	input,	

the	approximate	latitude	and	longitude	of	your	study	area	in	decimal	degrees.	Usually,	reporting	the	

coordinates	of	some	point	near	your	study	area	(e.g.,	closest	town)	is	good	enough.	Specify	the	latitude	

and	longitude	you	would	like	to	use	under	“ref_lat”	and	“ref_long”	respectively,	in	the	user	defined	

input	portion	of	the	code	block.	

User	defined	input	is	relatively	simple	for	this	R	file.	Specify	the	name	of	the	x	axis	for	your	new	

coordinate	system	under	“newx”.	Specify	the	name	of	the	y	axis	for	your	new	coordinate	system	under	

“newy”.	Specify	the	new	time	zone	code	under	“new.timezone”.	Specify	the	output	projection	under	

“output.projection”.	This	step	is	actually	somewhat	redundant	if	you	already	used	the	code	block	“Re-

project	Points	to	UTM”,	however,	I	included	it	in	case	the	user	wants	to	change	points	to	some	other	

coordinate	system.	

	

	

29	
	

BROWNIAN	BRIDGE	MOVEMENT	MODELS	

	 After	you	run	the	code	block	“Create	New	Fields”,	you	should	have	two	lists	in	your	working	

environment.	The	first	list	is	“newlist”,	which	consists	of	a	list	of	Spatial	Points	Data	Frames	projected	in	

whatever	coordinate	system	was	selected	at	the	“Reprojecting	Points”	step.	The	second	list	is	called	

“newlist_df”	and	it	consists	of	a	list	of	data	frames	(not	Spatial	Points	Data	Frames)	populated	with	all	

fields	specified	in	the	“Create	New	Fields”	code	block.	Many	of	the	functions	that	were	added	to	the	

“Create	New	Fields”	code	block	are	just	to	demonstrate	the	cool	things	you	can	do	with	R.	A	few	of	the	

new	fields,	however,	are	necessary	for	creating	Brownian	bridge	movement	models.	Specifically,	

coordinates	in	UTM	(or	some	other	Cartesian	coordinate	system)	are	necessary,	as	is	a	field	specifying	

the	time	lag	in	minutes	between	consecutive	GPS	fixes.	The	Brownian	bridge	movement	model	is	an	

approach	to	generating	utilization	distributions	that	is	specifically	intended	for	auto-correlated	location	

data.	It	is	used	when	GPS	fixes	are	taken	at	such	high	frequencies	that	consecutive	points	cannot	be	

considered	independent.	Of	the	sample	files	in	Appendix	B,	only	the	files	“GPS_D”	and	“GPS_E”	have	

this	structure.	The	Brownian	bridge	movement	model	is	inappropriate	for	files	“GPS_A”,	“GPS_B”	and	

“GPS_C”,	however,	you	can	still	create	Brownian	Bridges	from	these	files	if	you	are	interested	in	seeing	

how	the	results	differ	from	those	created	for	truly	auto-correlated	data.	

	 I	would	recommend	the	following	steps	for	using	the	“Create	BBMM”	code	block	for	the	first	

time.	First,	save	the	sample	data	files	named	“GPS_D”	and	“GPS_E”	as	csv	files	in	a	file	folder	with	no	

other	files	(i.e.,	remove	“GPS_A”,	“GPS_B”,	and	“GPS_C”).	Next,	run	through	the	following	code	blocks:	

“Create	List	of	Spatial	Points	Data	Frames”,	“Re-project	Points	to	UTM”,	and	“Create	New	Fields”.	Don’t	

worry	about	creating	MCP	or	KDE	home	range	estimates	or	plotting	points	to	remove	outliers	for	these	

sample	data	sets.	Next,	load	the	code	block	titled	“Create	BBMM”	into	the	Source	browser	notebook.	

	 The	options	involved	in	creating	Brownian	bridge	movement	models	are	considerably	more	

complicated	than	those	for	any	of	the	previous	steps.	The	function	“brownian.bridge”	estimates	

30	
	

probability	of	use	across	a	spatial	grid	of	points	based	upon	the	locations	of	animal	relocation	points	and	

the	time	lag	between	these	points.	In	order	for	this	function	to	work,	you	will	need	to	specify	this	grid	of	

points.	There	are	two	ways	to	do	this:	the	first	is	to	specify	only	the	cell	size	and	to	allow	the	BBMM	

package	to	estimate	the	extent	of	the	availability	grid,	the	second	is	to	manually	create	a	grid	of	points	

and	tell	the	function	to	estimate	probability	of	use	for	each	point	in	this	grid.	The	first	method	requires	

less	user	input,	but	it	often	produces	an	availability	grid	that	is	too	small	to	capture	the	full	utilization	

distribution.	I	recommend	using	both	methods	on	the	sample	data	files	before	using	this	code	block	on	

your	own	data.	To	do	this,	modify	the	following	lines	of	user-defined	input:	

X = "UTM_X" # The column name of your x coordinate
Y = "UTM_Y" # The column name of your y coordinate
loc.error = 20
maxlag = 60
levels = 95
cell.size = 10 # change to NULL if area.grid is used
grid = NULL # if area.grid is created Null status will be removed
	

	

The	values	“X”,	and	“Y”	should	be	self-explanatory.	The	value	“loc.error”	refers	to	the	location	

error	expected	for	your	relocation	points.	It	can	either	be	a	single	value	or	a	vector	of	values.	The	value	

“maxlag”	is	the	maximum	time	lag	in	minutes	that	is	to	be	allowed	for	Brownian	bridge	calculation.	The	

value	“levels”	is	the	percent	contour	to	be	drawn	around	points	in	the	availability	grid.	It	is	analogous	to	

the	density	contour	in	a	kernel	home	range.	The	value	“cell.size”	is	the	size	of	each	point	in	the	grid.	

Smaller	values	of	“cell.size”	will	result	in	a	higher-resolution	picture	of	utilization	distribution,	but	

increase	computation	time.	The	value	“grid”	is	the	name	of	the	availability	grid	to	be	used	if	you	are	

manually	specifying	an	availability	grid.	If	you	want	to	specify	only	“cell.size”	and	have	the	function	

estimate	the	availability	grid	for	you,	this	value	needs	to	be	NULL.	

	 Next,	if	you	want	the	package	to	estimate	the	availability	grid	for	you,	skip	all	the	lines	of	user-

defined	input	below	the	line	of	hashtags	(#).	Specifically,	you	will	be	skipping	these	lines:	

	

31	
	

	

	

	

Optional user defined input. Skip if “cell size” method of grid creation is
used.

LeftX=646000
RightX=648000
TopY=2945000
BottomY=2942000
size=10

xcoords<-seq(from=LeftX, to=RightX, by=size)
ycoords<-seq(from=BottomY, to=TopY, by=size)
x<-rep(xcoords, times=length(ycoords))
y<-rep(ycoords, each=length(xcoords))
grid<-data.frame(x,y)
cell.size = NULL # over-rides earlier cell size if run

	

	 The	above	code	generates	a	uniform	rectangular	grid	of	points.	It	is	actually	a	very	useful	bit	of	

code	for	various	operations	and	it	is	worth	playing	around	with	to	understand	how	it	works.	Basically,	

the	values	“LeftX”,	“RightX”,	“TopY”,	and	“BottomY”	specify	the	minimum	X	value,	maximum	X	value,	

maximum	Y	value,	and	minimum	Y	value	respectively.	The	value	“size”	specifies	how	far	apart	(in	

meters)	you	want	the	points	to	be.	Note	that	the	last	line	of	code	in	this	block	re-sets	the	value	

“cell.size”	to	NULL.	This	is	because	the	“brownian.bridge”	function	requires	either	cell	size	or	an	

availability	grid	(but	not	both)	to	be	specified.	

	 After	skipping	the	above	code,	highlight	everything	below	the	second	line	of	hashtags	and	click	

run.	Depending	on	the	number	of	files	you	have	and	the	cell	size	you	specified,	this	could	take	a	while	to	

run.	Eventually,	you	should	see	plots	similar	to	Figures	16	and	17	appearing	in	your	Plots	window.	

	

32	
	

	
Figure	16:	Plot	of	a	Brownian	bridge	movement	model	with	95%	probability	contour	drawn	in	black,	movement	
trajectory	represented	by	a	red	line,	and	relocation	points	represented	by	red	dots.	This	movement	trajectory	was	
adequately	captured	by	the	availability	grid	created	by	BBMM.	
	

	
Figure	17:	Plot	of	a	Brownian	bridge	movement	model	with	95%	probability	contour	drawn	in	black,	movement	
trajectory	represented	by	a	red	line,	and	relocation	points	represented	by	red	dots.	This	movement	trajectory	was	
not	adequately	captured	by	the	availability	grid	created	by	BBMM.	
	
	 Notice	that	the	plot	for	“GPS_E”	is	cut	off	by	the	margins	of	the	plot	image.	This	is	not	simply	a	

quirk	of	the	R	plotting	function	that	will	go	away	once	we	generate	shapefiles	(as	was	the	case	with	

kernel	polygons).	Any	shapefiles	exported	using	this	function	will	also	be	cut	off.	The	problem	lies	in	the	

33	
	

method	used	to	specify	the	availability	grid.	Usually,	specifying	only	the	cell	size	and	allowing	the	BBMM	

package	to	generate	the	availability	grid	works	fine.	In	this	case,	however,	the	availability	grid	is	not	

large	enough	to	capture	the	full	95%	probability	contour.	

	 In	cases	like	this,	we	will	need	to	specify	the	availability	grid	manually.	Just	looking	at	Figure	17,	

we	could	probably	guess	what	our	maximum	and	minimum	X	and	Y	coordinates	should	be	to	capture	

the	full	utilization	distribution.	The	code	provided	specifies	a	minimum	x	value	of	646000,	a	maximum	x	

value	of	648000,	a	maximum	y	value	of	2945000,	and	a	minimum	y	value	of	2942000.	To	manually	

specify	an	availability	grid	with	this	extent,	we	simply	highlight	the	entire	“Create	BBMM”	code	block,	

including	the	section	bracketed	by	hashtags,	and	click	run.	This	should	produce	plots	similar	to	Figures	

18	and	19.	

	 Figure	19	doesn’t	look	too	impressive	since	the	availability	grid	created	was	too	large.	However,	

this	won’t	affect	the	shapefile	generated	for	this	probability	contour.	Unless	you	are	planning	on	using	

the	plots	created	in	R	for	a	publication	or	poster,	I	wouldn’t	worry	about	this	too	much.	You	can	simply	

export	the	shapefile	using	this	code	block	and	view	it	in	ArcGIS.	

	 The	“Create	BBMM”	code	block	generates	3	output	files	per	individual.	The	first	is	a	Spatial	Lines	

shapefile	showing	whichever	probability	contour	was	specified	under	the	value	“levels”.	As	with	all	

other	shapefiles	generated	in	this	manual,	this	actually	consists	of	4	separate	files,	one	of	which	

specifies	the	projection.	The	second	file	is	a	points	shapefile	showing	points	in	the	availability	grid	with	

probability	of	use	given	in	the	“z”	column.	Points	with	probability	of	use	<	0.00000001	are	removed.	

These	points	can	be	viewed	in	ArcGIS	and	color	coded	according	to	the	“z”	column	to	give	a	picture	of	

the	internal	anatomy	of	the	home	range	(Fig.	20).	The	third	file	is	a	csv	file	showing	the	same	values	as	

the	points	shapefile,	but	lacking	spatial	projection	information.		

34	
	

	
Figure	18:	Plot	of	a	Brownian	bridge	movement	model	with	95%	probability	contour	drawn	in	black,	movement	
trajectory	represented	by	a	red	line,	and	relocation	points	represented	by	red	dots.	Availability	grid	was	specified	
manually.	
	

	
Figure	19:	Plot	of	a	Brownian	bridge	movement	model	with	95%	probability	contour	drawn	in	black,	movement	
trajectory	represented	by	a	red	line,	and	relocation	points	represented	by	red	dots.	Availability	grid	was	specified	
manually.	
	

	 Both	the	Spatial	Lines	polygons	showing	probability	contours	(e.g.,	50%	and	95%)	and	the	point	

grid	shapefiles	can	be	viewed	in	ArcGIS.	The	points	in	particular	can	provide	an	interesting	picture	of	

35	
	

animal	space	use	since	they	show	how	probability	of	use	varies	throughout	the	animal’s	home	range.	

The	“z”	values	in	these	files	specify	probability	of	use,	and	you	can	make	a	color-coded	representation	of	

an	animal’s	utilization	distribution	by	setting	a	color	scale	to	this	variable	(Fig.	20).		

	
Figure	20:	Map	produced	in	ArcGIS	showing	Brownian	bridge	points	shapefile	and	Brownian	bridge	95%	probability	
contour.	The	95%	probability	contour	is	shown	by	the	solid	red	line.	Points	that	are	colored	red	have	a	higher	
probability	of	use	than	points	colored	yellow	or	green.	
	
	

FINDING	CODES	FOR	COORDINATE	REFERENCE	SYSTEMS	

	 Specifying	the	Coordinate	Reference	System	(CRS)	is	probably	the	trickiest	part	to	using	R	for	

spatial	data	analysis.	Specifying	the	CRS	requires	that	packages	“rgdal”	and	“sp”	be	loaded.	Many	

vignettes	for	packages	relating	to	spatial	ecology	(e.g.,	adehabitatHR)	omit	any	discussion	of	CRS.		You	

can	generate	home	range	estimates	and	study	animal	movement	using	such	packages	without	

considering	CRS,	but	eventually	this	will	cause	problems.	If	you	export	your	data	to	shapefiles,	and	later	

view	these	shapefiles	in	ArcGIS,	they	might	appear	far	from	your	study	area.	The	best	way	to	analyze	

actual	wildlife	telemetry	data	is	to	specify	the	correct	CRS	from	the	beginning,	and	use	the	function	

36	
	

“spTransform”	to	transform	these	as	needed.	An	explanation	of	how	to	determine	the	CRS	of	your	data	

can	be	found	at:		

https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/OverviewCoordinateReferenceSystems.pdf.	

Hopefully,	you	either	know	the	coordinate	reference	system	used	for	your	data	or	can	easily	find	

it.	If	your	x	any	y	coordinates	are	given	in	decimal	latitude	longitude	coordinates,	you	will	probably	use	

WGS84,	which	is	specified	by	the	following	code:	“+init=epsg:4326”.	You	can	make	a	data	frame	of	all	

CRS	codes	recognized	by	R	using	the	following	command:	

EPSG<-make_EPSG()
	
	 This	produces	a	data	frame	with	5,078	rows	showing	all	CRSs	recognized	by	R	(Fig.	21).	If	you	are	

trying	to	transform	your	coordinates	to	an	uncommon	CRS	you	can	search	this	data	frame	to	find	the	

code	needed.	Most	likely,	your	GPS	data	will	be	delivered	as	decimal	latitude	and	longitude	coordinates,	

and	you	will	be	transforming	it	to	Universal	Transverse	Mercator	(UTM).		

	
Figure	21:	Screen	capture	of	a	small	portion	of	the	data	frame	of	all	possible	CRSs	available	in	R.	The	field	“code”	
specifies	the	epsg	code	which	can	be	used	to	specify	the	CRS	(e.g.,	“+init=epsg:26908”	specifies	NAD83/	UTM	zone	
8N).	The	field	“note”	describes	the	CRs,	and	the	field	“prj4”	lists	all	the	arguments	for	that	particular	CRS.	
	
	

	 Scrolling	through	the	data	frame	of	possible	CRSs	for	R	can	be	overwhelming,	but	there	are	ways	

to	narrow	this	down	substantially.	Let’s	say	I	wanted	to	subset	this	data	frame	to	show	only	those	

records	with	“NAD83”	included	somewhere	in	the	notes.	This	would	be	the	syntax	for	doing	so:	

37	
	

tmp<-EPSG[grep("NAD83", EPSG$note),]
	

	 This	code	creates	a	new	data	frame	called	“tmp”	that	shows	only	those	rows	with	“NAD83”	in	

the	notes.	You	don’t	need	to	understand	too	much	about	how	this	code	works,	but	if	you	play	around	

with	it	you	can	see	that	you	can	further	subset	the	data	frame	by	modifying	the	code	above.	For	

example:	

tmp2<-EPSG[grep("proj=utm", tmp$prj4),]
	

	 This	creates	a	new	data	frame	called	“tmp2”	that	selects	rows	from	“tmp”	that	have	the	text	

“proj=utm”	somewhere	in	the	prj4	column.	If	you	are	transforming	latitude/longitude	coordinates	to	

UTM	in	South	Texas,	I	would	recommend	keeping	the	values	given	under	“input.projection”	and	

“output.projection”	exactly	as	they	are	in	all	code	blocks	given	in	Appendix	A.	

	

SPECIFYING	DATE	AND	TIME	FORMAT	

	 The	code	blocks	in	this	manual	treat	date	and	time	as	a	single	date/time	field	in	POSIXct	format	

with	relevant	time	zone	information.	You	don’t	really	need	to	know	what	POSIXct	format	is	to	get	the	

code	to	work,	but	you	should	be	able	to	specify	the	correct	date/time	format	so	that	the	time	lag	field	is	

calculated	correctly	and	so	you	can	use	packages	to	accurately	calculate	things	like	moon	phase	and	sun	

angle.	This	manual	uses	the	function	“parse_date_time”	in	the	R	package	“lubridate”	to	combine	date	

and	time	fields	into	a	single	field	and	assign	it	the	correct	POSIXct	format.	I	would	recommend	taking	a	

look	at	the	“lubridate	cheat	sheet”	available	at	

http://blog.yhat.com/static/pdf/R_date_cheat_sheet.pdf.	In	short,	you	want	to	make	sure	that	you	

specify	the	correct	format	under	“datetime.code”	in	the	user	defined	input	portion	of	“Create	List	of	

Spatial	Points	Data	Frames”.	The	format	provided	for	the	sample	data	is	“dmy_HMS”	which	means	that	

38	
	

day	comes	first,	followed	by	month,	year,	(a	space),	hour,	minute,	and	second.	If	you	were	to	

accidentally	change	this	to	“mdy_HMS”	your	dates	would	be	incorrect.	

	 A	lot	of	GPS	collars	provide	date	and	time	in	both	UTC	and	the	local	time	zone.	In	my	

experience,	however,	these	files	often	to	not	correctly	account	for	daylight	savings	time.	Unless	you	are	

confident	that	the	local	time	field	in	your	input	locations	files	correctly	accounts	for	daylight	savings	

time,	I	would	recommend	discarding	the	local	time	zone	field	provided	by	the	GPS	collars	and	

recalculating	this	on	your	own	using	“lubridate”.	This	is	fairly	straightforward	and	is	actually	done	for	

you	in	the	code	block	“Create	New	Fields”.	You	simply	have	to	specify	the	correct	time	zone	code	in	the	

user	defined	input	section	under	“new.timezone”.	The	time	zone	code	provided	in	the	example	data	

(“CST6CDT”)	is	Central	time,	with	daylight	savings	time	included.	

	

TROUBLESHOOTING	

	 My	biggest	criticism	of	R	is	that	the	error	messages	are	extremely	difficult	to	interpret.	A	

common	mistake	R	users	make	is	failing	to	specify	the	correct	file	pathway	to	the	input	data.	Let’s	say	I	

used	back	slashes	instead	of	forward	slashes	under	“input”	for	the	code	block	“Create	List	of	Spatial	

Points	Data	Frames”.	In	other	words,	I	typed	“F:\R\R for GPS collar data\Test”	instead	of	

“F:/R/R for GPS collar data/Test”.	This	would	produce	the	following	error	message:	

Error in datalist[[i]] : subscript out of bounds
	

This	is	not	exactly	helpful.	Rather	than	try	to	google	specific	error	messages	to	figure	out	what	is	

going	on,	I	would	recommend	double-checking	both	the	input	files	and	the	user	defined	input	code	of	

each	code	block	to	make	sure	they	are	as	similar	as	possible	to	the	examples.	If	you	have	files	with	

different	column	headings	for	x	and	y	coordinates,	for	example,	this	will	definitely	cause	problems.		

39	
	

	 Another	common	problem	is	not	having	the	required	packages	loaded.	The	error	messages	in	

this	case	will	be	a	little	easier	to	interpret.	Let’s	say	I	did	not	have	the	package	“sp”	installed	when	I	ran	

“Create	List	of	Spatial	Points	Data	Frames”.	This	produces	the	following	error	message:	

Error in coordinates(xy) <- c(x, y) : could not find function "coordinates<-"
	

What	this	error	message	means	is	that	you	tried	to	use	the	function	“coordinates”	that	was	not	

available	in	your	working	environment.	It	was	not	available	because	the	package	containing	this	function	

(sp)	was	not	loaded.	

	 Having	random	junk	in	your	input	data	files	can	also	cause	major	problems.	If	a	column	is	meant	

to	contain	data	in	a	specific	format	(e.g.,	numerical),	including	just	a	single	cell	containing	a	text	string	

(e.g.,	“unknown”,	or	“missing”)	will	throw	a	wrench	in	things.	It	is	usually	ok	to	have	NA	operators	in	

your	data,	as	R	is	able	to	recognize	common	NA	operators,	however,	you	shouldn’t	mix	and	match	NA	

operators.	For	example,	you	don’t	want	to	have	some	cells	with	“NA”	and	others	with	“N/A”	or	“na”.	

The	result	of	random	junk	in	your	input	files	is	often	that	R	will	read	a	specific	field	as	a	factor	rather	

than	as	a	character	or	numerical	field.	This	can	cause	problems	if,	for	example,	“Latitude”	is	meant	to	be	

a	numerical	value	but	R	recognizes	it	as	a	factor.	This	will	make	it	impossible	to	perform	any	

mathematical	operations	on	this	field	and	will	prevent	you	from	being	able	to	plot	points	or	create	

Spatial	Points	Data	Frames.	

	

	

	

	

	
	
	
	
	

40	
	

APPENDIX	A	
	
Install	Required	Packages	
	
#	Install	required	packages	
#	Run	this	code	before	using	any	other	code	blocks	
	
usePackage	<-	function(p)		
{	
		if	(!is.element(p,	installed.packages()[,1]))	
				install.packages(p,	dep	=	TRUE)	
		require(p,	character.only	=	TRUE)	
}	
	
	
pkg<-c("sp","lubridate",	"rgdal",	"maptools",		"adehabitatHR",	"rgdal",	"rast
er",	"BBMM",	"lunar",	"oce",	"move")	
lapply(pkg,	usePackage)	
lapply(pkg,	library,	character.only=TRUE)	
install.packages("rhr",	repos=c("http://78.47.85.98/R",			
																																"http://cran.rstudio.com/"),	dep	=	TRUE)	
library(rhr)	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

41	
	

Create	List	of	Spatial	Points	Data	Frames	
	
#	Create	List	of	Spatial	Points	Data	Frames	
#	Animal	locations	must	be	saved	as	separate	csv	files	in	a	single	folder	
#	Names	for	x	and	y	coordinates	and	Date	and	Time	fields	must	be	identical	
#	Created	by	John	Leonard	08_23_2016	
	
#	User	defined	input.	Modify	lines	below.	
###	
input	=	"J:/R/R	for	GPS	collar	data/Test	Collar	Data"	
x	=	"Longitude"	#	The	column	name	of	your	x	coordinate	
y	=	"Latitude"	#	The	column	name	of	your	y	coordinate	
datetime.code	=	"dmy_HMS"	#modify	this	using	documentation	in	Lubridate	
Datecolumn=	"GMT.Date"	
Timecolumn=	"GMT.Time"	
timezone	=	"UTC"	
input.projection	=	"+init=epsg:4326"	

na.operator	=	"N/A"	
##	
	
#	Load	required	packages	
require(sp)	
require(lubridate)	
	
#	Set	working	directory	and	create	empty	list	to	store	csv	files.	
setwd(input)	
datalist	<-	list()		
files	<-	list.files(input)	
files	
	
#	Read	in	CSV	files.		
for(file	in	files)	{	
		stem	<-gsub("\\.csv$","",file)	
		datalist[[stem]]	<-	(read.csv(file,	stringsAsFactors=FALSE,	na.strings=na.o
perator))	
}	
	
#	Loop	through	csv	files	and	create	a	list	of	SpatialPointsDataFrames	
newlist<-list()	
#for	loop	for	going	through	each	file			
for	(i	in	1:length(datalist)){	
		infile	=	datalist[[i]]	
		infile	=	subset(infile,	infile[,x]!="NA")	
		infile	=	subset(infile,	infile[,y]!="NA")	
		Date	=	infile[,Datecolumn]	
		Time	=	infile[,Timecolumn]	
		infile$Date.Time<-parse_date_time(paste(Date,	Time),	datetime.code,		
																																				tz=timezone)	
		xy	=	infile[,c(x,	y)]	

42	
	

		coordinates(xy)<-c(x,y)	
		proj4string(xy)<-CRS(input.projection)	
		infile2<-SpatialPointsDataFrame(xy,	infile)	
		name	=	names(datalist[i])	
		newlist[[i]]<-infile2	
		names(newlist)[i]<-name	
	
}	
	
rm(Date,	file,	files,	i,	infile2,	name,	Time,	xy,	Datecolumn,	input,	
				pkg,	stem,	Timecolumn,	timezone,usePackage)	#	remove	unwanted	objects	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

43	
	

Plot	Points	to	Remove	Outliers	
	
#	Plot	all	points	to	remove	outliers	
#	To	be	used	on	the	"newlist"	object	
#	Simple	Version.	Only	removes	outliers	by	coordinates	
#	Created	by	John	Leonard	08_23_2016	
	
for	(i	in	1:length(newlist)){	
		plot(newlist[[i]]@coords,	main=names(newlist[i]))	
}	
	
#	First	make	duplicate	of	newlist	called	newlist2	just	to	be	safe	
	
newlist2<-newlist	
	
#	Modify	code	below	to	select	maximum	or	minimum	x	or	y	values	
#	Code	below	makes	"27"	the	maximum	latitude	value	for	GPS_A	
newlist2$GPS_A<-subset(newlist2$GPS_A,	newlist2$GPS_A@coords[,y]<27)	
	
#	Code	below	makes	"-97.55"	the	minimum	longitude	value	for	GPS_B	
newlist2$GPS_B<-subset(newlist2$GPS_B,	newlist2$GPS_B@coords[,x]>-97.55)	
newlist2$GPS_C<-subset(newlist2$GPS_C,	newlist2$GPS_C@coords[,y]>26.55)	
#	Plot	again	to	see	if	all	outliers	have	been	removed	
	
for	(i	in	1:length(newlist2)){	
		plot(newlist2[[i]]@coords,	main=names(newlist2[i]))		
}	
	
#	If	it	looks	good,	convert	newlist2	back	into	newlist.		
#	Note:	This	cannot	be	undone!	
newlist<-newlist2	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

44	
	

Re-project	Points	to	UTM	
	

#	Re-project	Points	to	UTM	
#	Created	by	John	Leonard	08_23_2016	
	
#	User	defined	input.	Modify	line	below.	
##	
output.projection	=	"+proj=utm	+zone=14	+datum=NAD83"	
##	
	
#	load	required	packages	
require(sp)	
require(lubridate)	
require(rgdal)	
	
#for	loop	for	going	through	each	file			
for	(i	in	1:length(newlist)){	
		infile	=	newlist[[i]]	
		infile	=	spTransform(infile,	CRS(output.projection))	
		name	=	names(newlist[i])	
		newlist[[i]]<-infile	
		names(newlist)[i]<-name		
}	
	
rm(i,	name)	#	remove	unwanted	objects	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

45	
	

Export	Points	
	
#	Export	Points	
#	Export	points	as	shapefiles	with	projection	
#	Note:	All	POSIXct	fields	must	be	converted	to	character	
#	Created	by	John	Leonard	08_23_2016	
	
	
for	(i	in	1:length(newlist)){	
		infile<-newlist[[i]]	
		infile$Date.Time<-as.character(infile$Date.Time)	
		name=names(newlist[i])	
		writePointsShape(infile,	name,	factor2char=TRUE)	
		cat(showWKT(proj4string(newlist[[i]])),	file=paste0(name,".prj"))	
}	
	
rm(i,	name)	#	remove	unwanted	objects	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

46	
	

Create	MCP	

#	Create	MCP	
#	Plots	Minimum	Convex	Polygon	Home	Ranges	and	exports	shapefiles	
#	Spatial	coordinates	should	be	UTM	for	correct	area	calculation	
#	Created	by	John	Leonard	08_23_2016	
	
#	User	defined	input.	Modify	line	below.	
##	
per=	100	#	percent	MCP	to	create	(e.g.	95,	100,	etc.)	
##	
	
#	Load	required	packages	
require(sp)	
require(maptools)	
require(adehabitatHR)	
require(rgdal)	
	
	
#	Initialize	Matrix	to	store	results	
mcpresults	=	matrix(nrow=0,	ncol=5)	
colnames(mcpresults)<-c("ID",	"HR_TYPE",	"MCP_LEVEL",	"POINTS",	"AREA_HA")	
	
for	(i	in	1:length(newlist)){	
		xy.mcp	=	SpatialPoints(newlist[[i]]@coords)	
		mcp.out	=	mcp(xy.mcp,	percent=per,	unout="ha")	
		plot(xy.mcp,	main=	names(newlist[i]))	
		plot(mcp.out,	add=TRUE)	
		name=names(newlist[i])	
		area=mcp.out$area	
		row=nrow(newlist[[i]])	
		mcpresults=rbind(mcpresults,c(name,	"MCP",per,	row,	area))	
		writePolyShape(mcp.out,	paste0(name,"_",per,"_MCP"),	factor2char=TRUE)	
		cat(showWKT(proj4string(newlist[[i]])),	file=paste0(name,"_",	
																																																						per,"_MCP.prj"))	
}	
	
rm(area,	i,	mcp.out,	name,	per,	row,	xy.mcp)	

	
	
	
	
	
	
	
	
	
	
	

47	
	

Create	KDE	adehabitatHR	
	
#	Create	KDE	
#	Create	and	export	kernel	home	ranges	with	projection	
#	Important!!!	Use	adehabitatHR	NOT	adehabitat.	
#	Created	by	John	Leonard	08_23_2016	
	
#	User	defined	input.	Modify	lines	below.	
###	
per	=95	#	percent	utilization	distribution	estimated	
h="href"	#	bandwidth	setting	("href",	"LSCV",	or	user	specified	number)		
grid=1000	
###	
	
#	Load	required	packages	
require(sp)	
require(maptools)	
require(adehabitatHR)	
require(rgdal)	
	
#	Initilizing	matrix	for	storing	results	
results	=	matrix(nrow=0,	ncol=7)	
colnames(results)<-c("ID",	"HR_TYPE",	"KERNEL_LEVEL",	"POINTS",	"AREA_HA",		
																					"h_value",	"h_meth")	
for	(i	in	1:length(newlist)){	
		name=	names(newlist[i])	
		ud<-kernelUD(newlist[[i]],h=h,	kern="bivnorm",	grid=grid)	
		ver=getverticeshr(ud,per)	
		area=ver$area	#get	homerange	polygon	area	
		h_value=ud@h$h	
		h_meth=ud@h$meth	
		row=nrow(newlist[[i]])	
		plot(newlist[[i]]@coords,	main=	names(newlist[i]))	
		plot(ver,	add=TRUE)	
		writePolyShape(ver,paste0(name,"_",per,"_",h,"_kernel"),	factor2char=TRUE)	
		cat(showWKT(proj4string(newlist[[i]])),	
				file=paste0(name,"_",per,"_",h,"_kernel.prj"))	
		results=rbind(results,c(name,	"KERNEL",per,	row,	area,	h_value,	h_meth))	
}	
	
rm(area,	grid,	h,	h_meth,	h_value,	infile,		
				name,	per,	row,	ud,	ver)	#	remove	unwanted	objects	
	
#	Didn't	work?	Make	sure	adehabitatHR	and	NOT	adehabiat	is	loaded!	

	
	
	
	
	

48	
	

Create	KDE	rhr	
	
	
#	Creating	Kernel	Home	Ranges	with	rhr	
#	Creates	and	exports	kernel	density	isopleths	as	shapefiles	
#	Allows	greater	flexibility	in	selecting	bandwidth	
#	Created	by	John	Leonard	08_23_2016	
	
#	User	defined	input.	Modify	lines	below.	
##	
per	=	50	
hmeth	=	rhrHpi	#	select	one:	rhrHref,	rhrHlscv,	rhrHpi,	rhrHrefScaled	
h_meth	=	"rhrHpi"	#	Same	as	above	but	with	quotations.	You	must	specify	both.	
##	
	
#	Load	packages	
require(rhr)	
require(sp)	
require(maptools)	
require(rgdal)	
	
rhr_results	=	matrix(nrow=0,	ncol=8)	
colnames(rhr_results)<-c("ID",	"HR_TYPE",	"KERNEL_LEVEL",	"POINTS",		
																									"AREA_HA",	"h_value1",	"h_value2",	"h_meth")	
for	(i	in	1:length(newlist)){	
		name=	names(newlist[i])	
		xy<-SpatialPoints(newlist[[i]]@coords)	
		bandwidth=	hmeth(xy)$h	
		kde<-rhrKDE(xy,	h	=	bandwidth,	levels	=	per)	
		name	=	names(newlist[i])	
		row	=	nrow(newlist[[i]])	
		area	=	(rhrArea(kde,	levels	=	per)$area/10000)	
		h_value1=bandwidth[1]	
		h_value2=bandwidth[2]	
		plot(kde,	main	=	name)	
		plot(xy,	add=TRUE)	
		iso<-rhrIsopleths(kde,	levels	=	per)	
		plot(iso,	main	=	name)	
		writePolyShape(iso,paste0(name,"_",per,"_",h_meth),	factor2char=TRUE)	
		cat(showWKT(proj4string(newlist[[i]])),	
						file=paste0(name,"_",per,"_",h_meth,".prj"))	
		rhr_results=rbind(rhr_results,	c(name,	"RHR",per,row,		
																																			area,	h_value1,h_value2,	h_meth))	
}	
	
rm(area,	bandwidth,	h_meth,	h_value1,	h_value2,	i,		
				iso,	kde,	name,	per,	row,	xy,	hmeth)	#	remove	unwanted	objects	

	
	

49	
	

Create	New	Fields	
	
#	Create	New	Fields	
#	Populates	GPS	locations	files	with	new	fields	and	writes	to	csv	files	
#	"newlist"	is	a	list	of	Spatial	Points	Data	Frames	with	projection	
#	traveldist	function	only	works	with	Cartesian	coordinate	system	
#	newlist_df	will	be	a	list	of	data	frames	(not	Spatial	Points	Data	Frames)	
#	Created	by	John	Leonard	08_23_2016	
	
#	User	defined	input.	Modify	lines	below.	
##	
ref_lat	=	26.55		#	Approximate	Latitude	for	sun	azimuth	calculation	
ref_long	=	-97.42	#	Approximate	Longitude	for	sun	azimuth	calculation	
newx="UTM_X"	
newy="UTM_Y"	
new.timezone="CST6CDT"	
output.projection	=	"+proj=utm	+zone=14	+datum=NAD83"	
###	
	
require(sp)	
require(rgdal)	
require(lubridate)	
require(lunar)	
require(oce)	
	
traveldist<-function(x,y){sqrt((append(0,diff(x))^2+append(0,diff(y))^2))}	
	
newlist_df<-list()	
#for	loop	for	going	through	each	file			
for	(i	in	1:length(newlist)){	
		infile	=	newlist[[i]]	
		infile	=	spTransform(infile,	CRS(output.projection))	
		xy	=	data.frame(coordinates(infile))	
		colnames(xy)[1]<-newx	
		colnames(xy)[2]<-newy	
		infile	=	data.frame(infile@data)	
		infile	=	cbind(infile,	xy)	
		infile$Local.Date.Time<-with_tz(infile$Date.Time,	tzone=new.timezone)	
		infile$Year<-strftime(infile$Date.Time,	format="%y")	
		infile$Month<-strftime(infile$Date.Time,	format="%m")	
		infile$Day<-strftime(infile$Date.Time,	format="%d")	
		infile$Hour<-strftime(infile$Date.Time,	format="%H")	
		Timelag.sec<-c(NA,	(diff(as.numeric(infile$Date.Time))))	
		infile$Timelag.min<-Timelag.sec/60	
		infile$Traveldist<-traveldist(infile[,newx],	infile[,newy])	
		infile$Velocity<-infile$Traveldist/infile$Timelag.min	
				sun<-sunAngle(infile$Date.Time,	longitude	=	ref_long,	
																latitude	=	ref_lat,	useRefraction	=	TRUE)	
		infile$sun.azimuth<-sun$azimuth	
		infile$moonphase<-lunar.phase(infile$Date.Time,	name=TRUE)	

50	
	

		name	=	names(newlist[i])	#Create	a	name	based	on	file	name		
		newlist_df[[i]]<-infile	
		names(newlist_df)[i]<-name	
					
		write.csv	=	write.table(infile,	file	=	paste0(name,"_modified.csv"),		
																										sep	=	",",		
				col.names	=	TRUE,	row.names	=	FALSE,qmethod	=	"double")	
}	
	
rm(infile,	xy,	i,	name,	newx,	newy,	ref_lat,	ref_long,		
				sun,	Timelag.sec,	write.csv)	#	Remove	unwanted	objects	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

51	
	

Create	BBMM	
	
#	Create	Brownian	Bridge	Movement	Models	
#	Recommended	to	use	this	after	"Create	New	Fields"	
#	newlist_df	is	list	of	Data	Frames	not	Spatial	Points	Data	Frames	
#	Should	only	be	used	on	high-frequency	telemetry	files	
#	Created	by	John	Leonard	08_23_2016	
	
#	User	defined	input.	Modify	lines	below.	
##	
X	=	"UTM_X"	#	The	column	name	of	your	x	coordinate	
Y	=	"UTM_Y"	#	The	column	name	of	your	y	coordinate	
loc.error	=	20	
maxlag	=	60	
levels	=	c(95)	
cell.size	=	10	#	change	to	NULL	if	area.grid	is	used	
grid	=	NULL	#	if	area.grid	is	created	Null	status	will	be	removed	
##	
	
#	Optional	user	defined	input.	Skip	if	"cell	size"		
#	method	of	grid	creation	is	used.	
##	
LeftX=646000	
RightX=648000	
TopY=2945000	
BottomY=2942000	
size=10	
	
xcoords<-seq(from=LeftX,	to=RightX,	by=size)	
ycoords<-seq(from=BottomY,	to=TopY,	by=size)	
x<-rep(xcoords,	times=length(ycoords))	
y<-rep(ycoords,	each=length(xcoords))	
grid<-data.frame(x,y)	
cell.size	=	NULL			#	over-rides	earlier	cell	size	if	run	
##	
	
require(BBMM)	
require(raster)	
require(maptools)	
require(rgdal)	
	
	
for	(i	in	1:length(newlist_df)){	
		infile	=	newlist_df[[i]]	
		name	=	names(newlist_df[i])	
		BBMM<-brownian.bridge(infile[,X],	infile[,Y],		
								time.lag	=	infile$Timelag.min[-1],location.error=loc.error,		
								cell.size=cell.size,	area.grid=grid)	
		x<-BBMM$x[BBMM$probability	>=	0.00000001]	
		y<-BBMM$y[BBMM$probability	>=	0.00000001]	

52	
	

		z<-BBMM$probability[BBMM$probability	>=	0.00000001]	
		tmp.df<-data.frame(x,y,z)	
		contours<-bbmm.contour(BBMM,	levels=	levels,	locations	=		
								cbind(infile[,X],	infile[,Y]),plot	=	TRUE)	
		title(main=name)	
		out.raster	<-	rasterFromXYZ(tmp.df,crs=CRS(output.projection),	
																														digits=2)	
		raster.contour	<-	rasterToContour(out.raster,levels=contours$Z)	
		writeLinesShape(raster.contour,	paste0(name,"_",levels,"_BBMM"),		
																		factor2char=TRUE)	
		cat(showWKT(proj4string(newlist[[1]])),	file=paste0(name,"_",	
																														levels,"_BBMM.prj"))	
		write.csv(tmp.df,	file=	paste0(name,	"_BBMM.csv"))	
		tmp.xy<-tmp.df[,c(1:2)]	
		coordinates(tmp.df)<-tmp.xy	
		proj4string(tmp.df)<-CRS(output.projection)	
		writePointsShape(tmp.df,	paste0(name,"BBMM_points"),		
																			factor2char=TRUE)	
		cat(showWKT(proj4string(newlist[[1]])),		
						file=paste0(name,"BBMM_points.prj"))	
}	
	
rm(grid,	infile,	tmp.xy,	BBMM,	BottomY,	cell.size,	contours,	i,	LeftX,					le
vels,	loc.error,	maxlag,	name,	out.raster,	raster.contour,	RightX,	size,	tmp.
df,TopY,	X,	x,	xcoords,	Y,	y,	ycoords,	z)	#	remove	unwanted	objects	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

53	
	

APPENDIX	B	
	
GPS_A	
	
No,GMT.Date,GMT.Time,Latitude,Longitude	
1,04.03.2014,17:17:06,27.5196477,-97.8816508	
2,24.03.2015,18:00:54,26.6064405,-97.5266566	
3,25.03.2015,6:01:48,26.5989913,-97.5229284	
4,26.03.2015,6:02:00,26.5978741,-97.5285523	
5,27.03.2015,6:01:29,26.5984423,-97.5253675	
6,27.03.2015,18:00:48,26.6059578,-97.5276865	
7,28.03.2015,6:01:54,26.5984083,-97.5218732	
8,29.03.2015,6:01:49,26.604351,-97.5282482	
9,30.03.2015,6:01:50,26.6054602,-97.5276204	
10,31.03.2015,6:01:29,26.6094811,-97.5221408	
11,31.03.2015,18:03:01,26.606822,-97.5265411	
12,01.04.2015,6:01:48,26.611661,-97.5173016	
13,02.04.2015,6:02:30,26.5985723,-97.5317179	
14,03.07.2015,4:31:00,26.6052205,-97.5244903	
15,03.07.2015,5:00:29,26.6052209,-97.5244126	
16,03.07.2015,5:30:19,26.605227,-97.5244498	
17,03.07.2015,6:01:13,26.6052318,-97.5245095	
18,04.07.2015,6:01:29,26.598013,-97.5317434	
19,05.07.2015,6:03:35,26.5981892,-97.5323105	
20,06.07.2015,6:01:29,26.5979925,-97.5323624	
21,07.07.2015,6:02:00,26.5992063,-97.5341875	
22,07.07.2015,18:01:30,26.6117546,-97.5174344	
23,08.07.2015,6:01:53,26.5992264,-97.5220764	
24,09.07.2015,6:01:29,26.6075099,-97.5208761	
25,10.07.2015,6:01:29,26.6021617,-97.5212333	
26,10.07.2015,18:02:00,26.607033,-97.519495	
27,11.07.2015,18:02:00,26.595673,-97.5209136	
28,12.07.2015,18:01:18,26.6065042,-97.5199294	
29,13.07.2015,6:01:29,26.5988166,-97.5312229	
30,13.07.2015,18:02:41,26.607097,-97.5206515	
31,14.07.2015,6:01:47,26.6120814,-97.5182165	
32,14.07.2015,18:01:00,26.5986079,-97.5318048	

	
	
	
	
	
	
	
	
	
	
	

54	
	

GPS_B	
	
No,GMT.Date,GMT.Time,Latitude,Longitude	
1,20.03.2015,15:34:02,26.4821409,-97.748736	
2,04.05.2015,9:31:00,26.604591,-97.5015835	
3,04.05.2015,10:01:10,26.6046073,-97.5015783	
4,04.05.2015,10:30:34,26.604535,-97.5016466	
5,04.05.2015,11:00:50,26.6046899,-97.5017766	
6,04.05.2015,11:31:09,26.6051792,-97.5020129	
7,04.05.2015,12:01:00,26.604178,-97.5025187	
8,04.05.2015,12:30:51,26.6041361,-97.501321	
9,04.05.2015,13:02:54,26.6046071,-97.5015888	
10,04.05.2015,13:30:38,26.6045807,-97.5016312	
11,04.05.2015,14:00:24,26.6044976,-97.5016679	
12,04.05.2015,14:30:11,26.6045028,-97.5016414	
13,04.05.2015,15:00:30,26.6045482,-97.5016254	
14,04.05.2015,15:30:44,26.6045768,-97.501622	
15,04.05.2015,16:00:21,26.6045811,-97.5016239	
16,04.05.2015,16:32:01,26.6045905,-97.5014692	
17,05.05.2015,3:30:26,26.6054723,-97.5040255	
18,05.05.2015,4:02:04,26.6059761,-97.5042102	
19,05.05.2015,4:32:06,26.6049197,-97.5057943	
20,18.05.2015,12:31:57,26.6039967,-97.5013199	
21,18.05.2015,13:01:20,26.6040002,-97.5015209	
22,19.05.2015,0:00:10,26.6046622,-97.501993	
23,19.05.2015,0:32:34,26.6052456,-97.5019699	
24,19.05.2015,1:01:24,26.606089,-97.5029338	
25,19.05.2015,1:31:00,26.6068372,-97.5026996	
26,19.05.2015,2:00:26,26.6071276,-97.5024094	
27,03.06.2015,2:31:27,26.6039387,-97.501293	
28,03.06.2015,3:00:29,26.6048106,-97.4999387	
29,03.06.2015,3:31:00,26.6065412,-97.5000181	
30,03.06.2015,4:00:13,26.6080513,-97.4999034	
31,03.06.2015,4:30:20,26.6088912,-97.5001647	
32,03.06.2015,5:00:30,26.6088553,-97.5000693	
33,03.06.2015,5:30:23,26.609892,-97.499959	
34,03.06.2015,6:03:00,26.6096874,-97.4993201	
35,04.06.2015,6:02:49,26.6077894,-97.5002686	
36,06.06.2015,6:01:30,26.6096849,-97.499904	
37,06.06.2015,18:01:48,26.605011,-97.5026791	
38,25.06.2015,6:01:59,26.6107375,-97.4908773	
39,27.06.2015,6:02:40,26.6128831,-97.4943688	
40,28.06.2015,18:00:54,26.6127302,-97.4941202	
41,01.07.2015,6:02:17,26.6146628,-97.4875767	
42,01.07.2015,18:00:29,26.6149471,-97.4906366	
43,10.07.2015,6:03:00,26.6138451,-97.4892091	
44,11.07.2015,18:01:30,26.6150099,-97.4904467	

	
	

55	
	

GPS_C	
	
No,GMT.Date,GMT.Time,Latitude,Longitude	
1,20.04.2015,14:33:29,26.4819699,-97.7649551	
2,20.04.2015,15:00:16,26.5722701,-97.4482499	
3,03.05.2015,6:02:31,26.6183978,-97.482038	
4,04.05.2015,6:01:24,26.6184227,-97.481947	
5,04.05.2015,6:30:25,26.618533,-97.4820344	
6,04.05.2015,7:00:16,26.6184642,-97.4816968	
7,04.05.2015,19:30:15,26.6107478,-97.5096767	
8,04.05.2015,20:01:24,26.6107796,-97.5097708	
9,04.05.2015,20:30:15,26.6106074,-97.5098095	
10,04.05.2015,21:00:36,26.6107062,-97.5092381	
11,04.05.2015,21:30:30,26.6107829,-97.5099171	
12,04.05.2015,22:01:30,26.6107491,-97.5098008	
13,04.05.2015,22:30:17,26.6107645,-97.5098402	
14,04.05.2015,23:00:19,26.6107744,-97.5097946	
15,04.05.2015,23:30:15,26.6108339,-97.5098999	
16,05.05.2015,0:01:31,26.6108225,-97.5097099	
17,10.05.2015,18:02:48,26.604987,-97.4996657	
18,11.05.2015,6:01:47,26.6120679,-97.5019465	
19,12.05.2015,6:02:31,26.6195127,-97.4995449	
20,12.05.2015,18:01:01,26.6108786,-97.5012745	
21,13.05.2015,18:01:18,26.6055012,-97.4944994	
22,14.05.2015,6:01:59,26.6132533,-97.4947846	
23,31.05.2015,6:02:30,26.6109213,-97.5002294	
24,01.06.2015,18:01:57,26.6015498,-97.4935202	
25,02.06.2015,6:02:25,26.6353387,-97.4893614	
26,02.06.2015,6:30:22,26.6326484,-97.4853938	
27,02.06.2015,7:00:25,26.6326469,-97.4796348	
28,02.06.2015,7:30:54,26.6293693,-97.4767442	
29,01.07.2015,6:03:14,26.6165646,-97.493789	
30,01.07.2015,18:01:45,26.6114574,-97.4901754	
31,02.07.2015,6:00:29,26.5997675,-97.4931211	
32,02.07.2015,6:01:08,26.5997256,-97.4929938	
33,02.07.2015,6:30:16,26.5985585,-97.4909666	
34,02.07.2015,7:00:13,26.5953412,-97.4875568	
35,02.07.2015,7:30:14,26.592486,-97.4826474	
36,02.07.2015,8:00:59,26.5915851,-97.4807614	
37,02.07.2015,8:32:32,26.5905198,-97.4801302	
38,02.07.2015,9:01:59,26.5940041,-97.4803705	
39,02.07.2015,9:31:24,26.5993019,-97.481959	
40,12.07.2015,18:01:54,26.6117236,-97.5002732	
41,13.07.2015,6:01:47,26.6040232,-97.5016165	
42,14.07.2015,18:02:47,26.6038701,-97.5012212	
43,15.07.2015,6:01:55,26.6185324,-97.481871	

	
	
	

56	
	

GPS_D	
	
No,GMT.Date,GMT.Time,Latitude,Longitude	
1,04.04.2015,6:01:30,26.6091494,-97.5188375	
2,04.04.2015,6:30:17,26.609306,-97.5191711	
3,04.04.2015,7:00:19,26.6093546,-97.519231	
4,04.04.2015,7:30:17,26.6098715,-97.5196549	
5,04.04.2015,8:00:54,26.6099107,-97.5196663	
6,04.04.2015,8:30:15,26.6103555,-97.5213488	
7,04.04.2015,9:00:15,26.6110596,-97.5218784	
8,04.04.2015,9:30:32,26.6110683,-97.5218632	
9,04.04.2015,10:00:14,26.6097845,-97.5249738	
10,04.04.2015,10:30:23,26.6063357,-97.5270335	
11,04.04.2015,11:00:20,26.6001222,-97.5312907	
12,04.04.2015,11:30:13,26.5980463,-97.5306553	
13,04.04.2015,12:00:14,26.5967446,-97.5297345	
14,04.04.2015,12:30:14,26.5965947,-97.5291979	
15,04.04.2015,13:00:49,26.5975529,-97.5275872	
16,04.04.2015,13:30:18,26.5975422,-97.527637	
17,04.04.2015,14:00:12,26.5983114,-97.5267741	
18,04.04.2015,14:30:14,26.5988762,-97.5244212	
19,04.04.2015,15:00:30,26.5998497,-97.5230612	
20,04.04.2015,15:30:51,26.5987122,-97.5218578	
21,04.04.2015,16:00:30,26.5987009,-97.5219175	
22,04.04.2015,16:30:20,26.5987193,-97.5218724	
23,04.04.2015,17:00:13,26.598694,-97.5218923	
24,04.04.2015,17:30:24,26.5987688,-97.5219393	
25,04.04.2015,18:00:19,26.598785,-97.5219366	
26,04.04.2015,18:30:10,26.5981288,-97.5209618	
27,04.04.2015,19:00:13,26.6002612,-97.5206945	
28,04.04.2015,19:30:26,26.6003189,-97.5206804	
29,04.04.2015,20:00:17,26.6007169,-97.5217935	
30,04.04.2015,20:31:26,26.6027113,-97.5213921	
31,04.04.2015,21:01:20,26.6030987,-97.5218722	
32,04.04.2015,21:30:55,26.6030413,-97.5219005	
33,04.04.2015,22:00:55,26.6030844,-97.5219022	
34,04.04.2015,22:30:38,26.6030525,-97.5218271	
35,04.04.2015,23:00:55,26.6030589,-97.5218459	
36,04.04.2015,23:31:16,26.6032073,-97.5217183	

	
	
	
	
	
	
	
	
	
	

57	
	

GPS_E	
	
No,GMT.Date,GMT.Time,Latitude,Longitude	
1,18.04.2015,6:00:52,26.6000133,-97.5312327	
2,18.04.2015,6:30:28,26.6000196,-97.5311133	
3,18.04.2015,7:00:14,26.5999368,-97.5310689	
4,18.04.2015,7:30:15,26.5998814,-97.5310327	
5,18.04.2015,8:00:22,26.5999176,-97.5310392	
6,18.04.2015,8:30:37,26.5999812,-97.5310676	
7,18.04.2015,9:00:05,26.5999377,-97.5309728	
8,18.04.2015,9:30:26,26.5999868,-97.5310391	
9,18.04.2015,10:00:30,26.5997678,-97.5305979	
10,18.04.2015,10:30:21,26.5998276,-97.5304599	
11,18.04.2015,11:00:21,26.5997476,-97.5300599	
12,18.04.2015,11:30:19,26.5997161,-97.530042	
13,18.04.2015,12:00:54,26.5997281,-97.530046	
14,18.04.2015,12:30:18,26.5997968,-97.5298144	
15,18.04.2015,13:00:27,26.599798,-97.5297866	
16,18.04.2015,13:30:35,26.5998599,-97.5297686	
17,18.04.2015,14:00:57,26.599702,-97.5298366	
18,18.04.2015,14:31:47,26.5998226,-97.5297872	
19,18.04.2015,15:00:30,26.5999551,-97.5297307	
20,18.04.2015,15:30:26,26.5996671,-97.5292929	
21,18.04.2015,16:01:20,26.599604,-97.529252	
22,18.04.2015,16:32:00,26.5996832,-97.5292929	
23,18.04.2015,17:02:03,26.5996427,-97.5292845	
24,18.04.2015,17:32:17,26.5996721,-97.5292632	
25,18.04.2015,18:01:48,26.5996494,-97.5292223	
26,18.04.2015,18:30:27,26.5996164,-97.5292538	
27,18.04.2015,19:00:29,26.5995333,-97.5292089	
28,18.04.2015,19:30:56,26.5994689,-97.5291984	
29,18.04.2015,20:00:48,26.5995661,-97.5292101	
30,18.04.2015,20:30:49,26.5994364,-97.5292227	
31,18.04.2015,21:00:30,26.599468,-97.5291727	
32,18.04.2015,21:30:32,26.599511,-97.5290198	
33,18.04.2015,22:00:31,26.5994915,-97.5290901	
34,18.04.2015,22:30:20,26.5994762,-97.5289939	
35,18.04.2015,23:00:07,26.599465,-97.5288965	
36,18.04.2015,23:30:20,26.5995674,-97.5290251	
37,19.04.2015,0:00:19,26.5995419,-97.5290444	
38,19.04.2015,0:30:13,26.5996365,-97.5284119	
39,19.04.2015,1:00:14,26.5995811,-97.5283894	
40,19.04.2015,1:30:15,26.5995823,-97.5283616	
41,19.04.2015,2:00:18,26.5995214,-97.5283676	
42,19.04.2015,2:30:45,26.5995531,-97.5283071	
43,19.04.2015,3:00:06,26.5994356,-97.5282316	
44,19.04.2015,3:30:30,26.5994335,-97.5282715	
45,19.04.2015,4:00:12,26.5994684,-97.5283058	
46,19.04.2015,4:30:13,26.5994157,-97.5283039	

