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Abstract

Context Confidence ellipses are areas derived from

telemetry data that can be used to assess daily habitat

use when integrated with land cover spatial structure.

Our goal was to assess the feasibility of using

confidence ellipses derived from telemetry data to

assess landscape structure.

Objectives Our objectives were (1) to identify the

geometry of confidence ellipses that can be used in

landscape level studies; and (2) to quantify landscape

structure within confidence ellipses derived from

telemetry data. We used Rio Grande wild turkeys

(Meleagris gallopavo intermedia) as our model

species.

Methods We simulated landscapes and clipped them

using known confidence ellipse shapes. We then

compared the clipped areas with values measured for

our simulated landscapes using landscape metrics that

describe landscape structure. We used these results to

select ellipse derived from telemetry data to evaluate

landscape structure used by wild turkeys during the

breeding and wintering seasons in South Texas.

Results Ellipses with a low x/y ratio (\ 0.38) had

significant differences from simulated landscape mea-

surements. This information was used to remove wild

turkey ellipses that did not meet the simulation

criteria. Our results suggest that wild turkeys in South

Texas used larger, more aggregated and intercon-

nected patches of woody cover during the wintering

season than during the breeding season.

Conclusions Landscape simulations facilitate the

understanding of how landscape sampling strategies

may be affected by sampling shape models. The

integration of wildlife telemetry data with landscape

ecology approaches and remote sensing were impor-

tant in identifying spatial patterns used by wildlife.

Keywords Confidence ellipses � Landscape
ecology � Landscape metrics � Radiotelemetry �
Simulations

Introduction

Radiotelemetry has been used in wildlife studies for

over 60 years to assess animal locations and habitat

resources utilization (Cochran and Lord 1963; Heb-

blewhite and Haydon 2010). There have been numer-

ous worldwide studies documented using

radiotelemetry approaches and it has proven to be an

effective tool to assess landscape spatial structure use

by wildlife (e.g. White and Garrott 1986; Russo et al.
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1997; Belcher and Darrant 2004; Seryodkin et al.

2013). Prior to the late 1960s, radiotelemetry triangu-

lations were assumed to be error-free (Heezen and

Tester 1967). However, errors occur as a result of

location error, mapping error, signal bounce, proxim-

ity of surrounding vegetation, terrain features, elec-

tromagnetic effects, animal movements, distance

effects, and observer error (Withey et al. 2001). These

errors result in imprecisions in variance around

bearings, distance from radio-collared animals, and

intersection angle of the final triangulation (Saltz and

Alkon 1985). Although error polygons have been used

to address these issues by providing a polygon around

the initial triangulation that assumes the animal is

somewhere within that polygon, they have been found

to be a poor measure of accuracy (Withey et al. 2001).

Habitat use can easily be misclassified when there are

errors in triangulations (Samuel and Kenow 1992).

Confidence ellipses are an alternative to error poly-

gons and are considered the best error measurement

for triangulations because they are more likely to

provide a precise location even if one of the bearings is

an outlier (White and Garrott 1990). Confidence

ellipses set a threshold (95%) for which data to retain

and which to disregard due to poor triangulations

(Saltz 1994). Though much of the literature on

telemetry mentions that authors accounted for error

in their data, few studies mention the effects that the

error will have on the statistical analysis to assess

accuracy (Murakami and Mano 1998). As a result, the

impacts that these ellipses have on telemetry studies is

unknown. Confidence ellipses provide an area that

may be used to assess the land cover spatial structure

within the ellipse for a specific point in time and space.

Confidence ellipses combined with landscape metrics

that describe land cover spatial structure could provide

significant insight into how species use their habitat

based on telemetry data. Though home range studies

focus on a large area assumed to encompass all of the

needed resources for an animal to survive (Powell and

Mitchell 2012), daily movement studies examine

habitat use on a smaller scale, and typically focus on

individual selection patterns (Byrne et al. 2014).

Confidence ellipses would be useful to reanalyze

decades of individual telemetry data locations from

previous wildlife studies to gain a historical perspec-

tive of landscape level habitat use by species. Com-

bined with remote sensing approaches, the analysis of

landscape structure within ellipses could make several

analyses comparable through time and provide new

insights on habitat use.

Environmental changes at the landscape level can

be monitored by integrating remote sensing

approaches and geographic information systems

(GIS) (Mata et al. 2018; Miller et al. 2019; Lombardi

et al. 2020). Additionally, landscape metrics derived

from these approaches have been commonly used to

assess changes in vegetation and measure landscape

structure by providing a link between landscape

pattern and function (Perotto-Baldivieso et al. 2011;

Kupfer 2012). Consequently, changes in the spatial

configuration of landscapes can have impacts on

wildlife populations and their interactions with the

landscape (Gustafson et al. 1994; Moilanen and

Nieminen 2002; Miller et al. 2019). Moreover,

combined use of landscape ecology and remote

sensing approaches allows us to quantify landscape

structure and how changes in landscape structure can

affect species’ distribution and habitat use (Kuvlesky

et al. 2020). This information may then be used to

manage wildlife populations and provide specific

recommendations on harvest limits, species habitat,

and monitor populations.

The goal of our research was to assess the feasibility

of using confidence ellipses derived from telemetry

data to assess the available landscape structure for

wildlife. The approach we used analyzed how sam-

pling shape affects landscape metric variables and has

implications for multiple facets of wildlife research

when concerning the effects landscape spatial pattern

has on daily habitat use. We used an integration of

remote sensing data, telemetry approaches, and land-

scape metrics to revisit data collected in 2004 and

2005 to achieve the following objectives: (1) identify

the geometry of confidence ellipses that can be used in

landscape level studies; and (2) to quantify landscape

structure within confidence ellipses derived from

telemetry data for our model species during the

breeding and wintering seasons. We hypothesized

that confidence ellipses provide an area that can be

used to quantify landscape structure based on individ-

ual locations. We used Rio Grande wild turkeys

(hereafter ‘wild turkeys’; Meleagris gallopavo inter-

media) in South Texas, USA as our model species.

Wild turkeys utilize herbaceous areas during the

breeding season for foraging, breeding, nesting, and

brood-rearing (Alldredge et al. 2014). During the

wintering season, wild turkeys use areas characterized
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by mature trees that are used for roosting and foraging

directly below the canopy, when wild turkeys typically

are not moving large distances (Holdstock et al. 2005),

and roosting habitat that permits unobstructed views

of the surrounding landscape and protection from

predators is a critical part of wild turkey habitat (Litton

and Harwell 1995). Wild turkeys in Texas typically

nest and rear poults from April to August (Hall et al.

2006) and breeding seasons may be directly associated

with weather changes as early rainfall results in earlier

nesting due to early sprouting of green vegetation,

which results in more cover and food resources

(Beasom and Pattee 1980). Wild turkeys in Texas

have been found to consume over 90 food items and

insects are the most common food source during the

breeding season, followed by grasses, brush, and forbs

(Quinton et al. 1980; Cathey et al. 2007).

Materials and methods

Study area

This study was conducted on the Encino, Laureles, and

Norias divisions of the King Ranch in Brooks,

Kenedy, and Kleberg counties (Fig. 1). These counties

are located within the Western Gulf Coastal Plains

ecoregion of Texas and encompasses portions of the

three King Ranch divisions (Texas Parks and Wildlife

Department 2018a). These areas are mixed-brush

communities (Scifres 1980) comprised of dense

vegetation dominated by seacoast bluestem (Schiza-

chyrium scoparium), red lovegrass (Eragrostis secun-

diflora), yucca (Yucca rupicola), buffelgrass

(Cenchrus ciliaris), indian blanket (Gaillardia pul-

chella), annual ragweed (Ambrosia artemisifolia),

Texas croton (Croton texensis), granjeno (Celtis

pallida), huisache (Acacia farnesiana), honey mes-

quite (Prosopis glandulosa) and Texas live oak

(Quercus fusiformis) (Texas Parks and Wildlife

Department 2018b; National Park Service 2019). Soils

in the ecoregion are primarily sands, clay loams, and

sandy loams (Fulbright et al. 1990). Rainfall in South

Texas is sporadic and highly variable with peak

rainfall occurring throughout May and June (Fulbright

et al. 1990). Precipitation in the region annually

averages 760 mm (National Oceanic and Atmospheric

Administration 2018). Average temperatures through-

out the year can range anywhere from 6 �C in the

winter and frequently reach over 35 �C in the summer

(US Climate Data 2020).

Data collection

We used telemetry data from a study conducted on

female wild turkey during the wintering and breeding

seasons in South Texas in 2004 and 2005 (Ramirez

et al. 2012). Turkeys were fitted with backpack-style

mortality-sensing transmitters (Advanced Telemetry

Systems, Inc., Isanti, Minnesota), and locations were

triangulated using hand-held Yagi antennas to locate

175 individuals 3–7 times/week throughout both years

to collect diurnal and crepuscular movement data. We

estimated telemetry locations and generated confi-

dence ellipses areas drawn from triangulated coordi-

nates using LOAS (Ecological Software Solutions,

Sacramento, California). We generated a total of 946

ellipses, 180 during the winter season and 766 during

the breeding season. We selected a confidence ellipse

estimator with a small sample size correction at a 95%

confidence level. Variables collected from LOAS

were x-estimate, y-estimate, x-variance, y-variance,

covariance, major axis, minor axis, and area. Major

and minor axis variables were used to obtain aspect

ratio values that directly correspond to the shape of

each ellipse, while the area variable was used to filter

the data based on daily movement values. These

variables provided us with the needed information for

data filtering.

Data simulation

To our knowledge, there is no study that has addressed

how the shape of confidence ellipses may affect

landscape sampling and the results derived from

landscape metrics. While home range analyses are a

common practice (Kie et al. 2010), not much has been

done to quantify habitat use using confidence ellipses

and landscape metrics based on individual locations

gathered from telemetry locations. Our study used

confidence ellipses to assess land cover patterns

around an individual location instead of assessing

the seasonal or annual patterns typical of home range

studies. To date, aerial hexagon subsets have been

found to be sufficient in estimating land cover types,

though the small sample size of each block and

sampling strategies may increase biases (Hunsaker

et al. 1994; Hassett et al. 2012). To identify the

123

Landscape Ecol



123

Landscape Ecol



geometry of confidence ellipses that can be used in

landscape level studies, we simulated 5 landscapes

with different levels of spatial patterns using the

modified random cluster method (Saura and Martı́nez-

Millán 2000). This method simulates landscapes

considered to be realistic and can be replicated with

a wide range of spatial patterns. We generated our

landscapes using a landscape categorical spatial

pattern simulation software (Saura 2000; Saura and

Martı́nez-Millán 2000) with a design consisting of

landscapes with 5 levels of fragmentation (0.10, 0.25,

0.40, 0.55, 0.58; Fig. 2a) replicated 10 times. Frag-

mentation values corresponded to the degree of

fragmentation and the number of patches in the

simulated landscape. Level 0.10 demonstrates high

levels of fragmentation, 0.40 medium levels, and 0.58

exhibits the lowest fragmentation levels (Saura 2000).

We did not analyze levels of fragmentation above

0.593 as this is the percolation threshold value for

4-neighborhood analysis. Each landscape was simu-

lated with a length of 1000 pixels, and 3 classes with

equal proportion of class cover per landscape. Simu-

lated landscapes were imported to GIS and pixel

resolution was assigned to 1 m to emulate the spatial

resolution of National Agriculture Imagery Program

(NAIP) aerial photography. We created twelve

ellipses (Fig. 2b) with an area of 30,000 m2 each,

which differed in shapes based on the ratio between

the X-axis and the Y-axis (Table 1). A smaller aspect

ratio results in a narrower ellipse (Fig. 3). This

selected area value was sufficient to represent the area

covered by the daily movement of female wild turkeys

in South Texas (Byrne et al. 2014). We clipped the

simulated landscapes to the shape of each ellipse

(Fig. 2b) and calculated landscape metrics that

describe wild turkey habitat landscape structure:

percent woody cover (%), largest patch index (m2),

mean patch area (ha), aggregation index (%), edge

density (m/ha), Euclidean nearest neighbor distance

(m), and patch density (patches/100 ha) variables

(Perotto-Baldivieso et al. 2011). Values of percent

woody cover quantify abundance of patch types

independent from each other; largest patch index

reports the percentage of total area the largest patch

encompasses; aggregation index calculates frequen-

cies of different pairs of patch types; edge density

calculates edge length per unit area; patch density

refers to number of patches per unit area; and

Euclidean nearest neighbor distance measures dis-

tance between patches of the same class (Gustafson

and Parker 1992; Hargis et al. 1998; Hong et al. 2000).

We used FRAGSTATS 4.2 (McGarigal et al. 2012) to

quantify the simulated landscape structure and com-

pared results from sampled areas to the values of the

total area from the simulated landscapes using a linear

mixed model using SAS 9.4. We tested the fixed

effects of the ellipse clipped to the simulated land-

scapes, interaction of the entire simulated landscape

and shape of the ellipse; random effects included

replication within the simulated landscapes, an error

term for the landscape effect, and a residual term.

Normality of each error term was assessed using the

Shapiro–Wilk (1965) test. Levene’s (1960) test was

used to test homogeneity of variances associated with

the background effect. Mauchly’s (1949) test was used

to assess sphericity for the residual term. Normality

assumptions were satisfied, but variances were

heterogenous and sphericity was violated. Therefore,

we used an unstructured variance–covariance matrix

with replication of the background as the subject

(Pinheiro and Bates 1996). When the simulated

landscape and sampled shape interacted, simple main

effects of shape within each level of the simulated

landscape were tested, and each shape was compared

to the simulated landscape with a t-test (a = 0.05). We

selected the ellipse shapes that were statistically

similar to our simulated landscape results by selecting

a threshold of the x/y ratio. Ellipses with ratios above

0.38 and below 1.00 were considered to have similar

results to their respective landscapes.

Image classification

Forty National Agriculture Imagery Program (NAIP)

digital ortho quad-quandrangles (DOQQ) were

obtained through the Texas Natural Resources Infor-

mation System (TNRIS) for 2004 to assess landscape

structure. Images were classified using an unsuper-

vised classification (ERDAS Imagine 2016) into three

land cover classes: woody cover, herbaceous, and bare

bFig. 1 Study area location. Counties in dashed outlines

represent study area of the Norias, Laureles, and Encino

divisions of the King Ranch in South Texas, USA. The study

site was located in the Western Gulf coastal plains ecoregion.

Vertical lines represent the Southern Texas Plains ecoregion
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Fig. 2 Simulated

landscapes for the five levels

of fragmentation (0.10, 0.25,

0.40, 0.55, and 0.58) using

three classes each

distributed at 33% (a) and
sampling ellipses with

different aspect ratios

derived from these

simulated landscapes (b)
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ground following the methodologies described by

Mata et al. (2018) for mapping land cover in the same

region. Random points (200) were generated and used

to conduct an accuracy assessment in each DOQQ

(Foody 2009; Mata et al. 2018). Overall accuracy

assessments were at least 85% for each classified

DOQQ.

Landscape analysis

Using the telemetry data collected by Ramirez et al.

(2012) we selected ellipses that had X/Y ratios equal

or greater than 0.38 (Table 2), and areas that were\
30,000 m2. We selected 106 ellipses out of 180 (70%

total) during the winter season and 485 ellipses out of

766 (58% total) during the breeding season. We

clipped the classified imagery using these ellipses and

quantified woody cover spatial structure used by wild

turkeys during the breeding and wintering seasons

Table 1 Aspect ratios for twelve ellipses derived from the

division of the major and minor axes when area is kept at

30,000 m2

Aspect ratio Major axis Minor axis

0.15 37.89 252.00

0.17 40.29 237.00

0.19 43.01 222.00

0.22 46.13 207.00

0.24 48.47 197.00

0.27 51.07 187.00

0.32 55.52 172.00

0.38 60.82 157.00

0.47 67.25 142.00

0.59 75.19 127.00

0.76 85.26 112.00

1.00 97.00 97.00

Fig. 3 Ellipse shapes used to sample simulated landscapes. The value inside each ellipse corresponds to the X/Y ration in Table 2
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Table 2 The effect that low fragmentation pattern levels (0.55 and 0.58) have on landscape metric variables

Pattern

level

Aspect

ratio

Percent

woody cover

Edge

density

Largest patch

index

Patch

density

Mean

patch area

Euclidean nearest

neighbor distance

Aggregation

index

0.10

0.15 x

0.17 x x

0.19 x x

0.22 x

0.24 x

0.27 x

0.32 x x

0.38 x

0.47 x

0.59 x

0.76 x

1.00 x

0.25

0.15 x x

0.17 x

0.19 x

0.22 x

0.24 x

0.27 x

0.32 x

0.38 x

0.47 x

0.59

0.76

1.00

0.40

0.15 x

0.17 x

0.19 x

0.22 x

0.24 x

0.27

0.32 x

0.38 x

0.47 x

0.59

0.76

1.00

0.55

0.15 x x

0.17 x

0.19 x x

0.22 x
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using the following metrics: percent woody cover,

largest patch index, mean patch area, aggregation

index, edge density, Euclidean nearest neighbor

distance, and patch density for the following land

cover types: woody, herbaceous, and bare ground

(Perotto-Baldivieso et al. 2011). We compared the

frequency distribution of woody cover spatial struc-

ture (i.e. landscape metrics) for wild turkeys in South

Texas between breeding and wintering seasons using

the Kolmogorov–Smirnov Z goodness of fit test with a

significance level of 0.05 (Perotto-Baldivieso et al.

2011).

Results

Landscape metric variables were influenced

(P\ 0.05; DF = 540) most often at simulated pattern

levels 0.55 and 0.58. However, all pattern levels had at

least one difference between the metrics measured

when comparing the simulated landscape to the

corresponding ellipse (Table 1). Ellipses ratios of

0.22, 0.24, and 0.27 were also affected at pattern levels

of 0.58. Of the seven-landscape metrics tested on the

simulated ellipses, we found that largest patch index

and patch density metrics corresponding to low

fragmentation (pattern levels 0.55 and 0.58) were the

most altered from the measured values of the

landscape (Table 3). Shapes with aspect ratios of

0.15, 0.17, 0.19, and 0.32 had the most significant

differences from the entire landscape measurements.

We therefore selected ellipses that had aspect ratios

between 0.38 and 1.00. While circular sampling

methods are a common practice (Wheatley 2010;

Schindler et al. 2013; Plexida et al. 2014), our

simulation results show these had statistical

Table 2 continued

Pattern

level

Aspect

ratio

Percent

woody cover

Edge

density

Largest patch

index

Patch

density

Mean

patch area

Euclidean nearest

neighbor distance

Aggregation

index

0.24 x

0.27 x

0.32 x x x x x x

0.38 x x

0.47 x

0.59 x

0.76 x

1.00 x x x

0.58

0.15 x x x x x

0.17 x x x

0.19 x x x x

0.22 x x

0.24 x x x

0.27 x x x

0.32 x x

0.38 x x x

0.47 x x

0.59 x x

0.76 x x

1.00 x x x x

Pattern level of the simulated landscape and corresponding ellipse aspect ratios significant (P\ 0.05) for each landscape metric
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differences (P\ 0.05; DF = 540) from the landscape

measurements.

Breeding season ellipses had lower mean values

(P\ 0.05; DF = 1) than wintering ellipses of percent

woody cover (40.42% ± 2.22% and

53.51% ± 2.71%, respectively), largest patch index

(29.27% ± 2.45% and 44.29% ± 3.13%, respec-

tively), mean patch area (0.03 ha ± 0.0004 ha and

0.05 ha ± 0.007 ha, respectively), and aggregation

index (76.85% ± 1.30% and 82.60% ± 1.26%,

respectively) (Fig. 4). Values of patch density of

breeding season ellipses exhibited higher values than

wintering ellipses (�x=12,101 patches/ha ± 2427

patches/ha and 10,922 patches/ha ± 3226 patches/

ha, respectively). These metrics suggest that wild

turkeys in South Texas used larger, more aggregated

and interconnected patches of woody cover during the

wintering season than during the breeding season.

Discussion

Landscape simulations provided a robust approach to

identify the shapes of ellipses that can be used to

accurately represent landscape structure used by

wildlife. We integrated telemetry data with landscape

ecology and remote sensing principles in a new way to

assess landscape structure with current remote sensing

data and data gathered from telemetry locations in

previous years. To achieve this, we simulated land-

scapes that allowed us to control single pieces of

landscape characteristics (i.e. landscape size, frag-

mentation level, cover percentage). Simulations per-

mit limitless replication, which may be useful in

determining how different sampling strategies and

variables influence metric outputs. Simulation analy-

ses are not often done in reference to wildlife studies

and instead often focus their ecological implications

on climate change and natural catastrophes (Flato and

Boer 2001; Uno and Kashiyama 2013; Wing et al.

2017). Moreover, simulated landscapes are useful to

detect correlations between landscape patterns, spatial

heterogeneity, and ecological processes (Gustafson

and Parker 1992; With et al. 1997; Saura and

Martı́nez-Millán 2000). Utilizing this simulation

approach allowed us to identify sampling techniques

that can be used to assess real data sets. While scale is

known to influence the response of landscape metrics

Table 3 Landscape metrics and aspect ratios affected (P\ 0.05) for each significant index regardless of pattern level

Aspect ratio Percent

woody

cover

Edge

density

Largest

patch

index

Patch

density

Mean

patch

area

Euclidean nearest

neighbor distance

Aggregation

index

Total

ellipsoids

affected

0.15 1 2 2 4 1 1 11

0.17 1 2 3 1 1 8

0.19 1 1 2 4 1 1 10

0.22 2 3 1 6

0.24 2 3 1 1 7

0.27 2 2 1 1 6

0.32 1 2 2 4 2 1 12

0.38 1 2 3 1 1 8

0.47 2 3 1 6

0.59 2 1 1 4

0.76 2 1 1 4

1.00 1 2 2 1 1 1 8

Total landscape

metrics affected

5 8 24 32 6 5 10

cFig. 4 Frequency distributions of woody landscape metrics

between breeding and wintering season ellipse created around

female Rio Grande wild turkey telemetry locations in South

Texas. Black bars represent breeding habitat and gray ones,

wintering habitat
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(Moraga et al. 2019), landscape sampling shape and

fragmentation levels also affect metric variables.

Although circular sampling methods are the most

commonly used sampling method (Wheatley 2010;

Schindler et al. 2013; Plexida et al. 2014), it would

instead be of benefit to use a slightly elliptical

sampling strategy to accurately quantify landscape

structure, as circular sampling strategies result in

greater variances in the true landscape metric. Further

research needs to address metrics behavior due to edge

effects with different aspect ratio ellipses sampling

strategies. Our results suggest that metrics for our

gathered telemetry data would not be representative to

capture overall landscape structure if we were to use

ellipses that had aspect ratios below our identified

threshold (X/Y ratio\ 0.38).

The integration of landscape ecology approaches,

wildlife techniques, and remote sensing were key to

identifying the spatial patterns around species location

data derived from telemetry data. This is supported by

our results using wild turkeys to assess habitat use.

There have been a long history of radiotelemetry

studies dating back to the late 1950s to assess

locations, movements, and home ranges of a variety

of species across the world (LeMunyan et al. 1958;

Loft and Kie 1988; Russo et al. 1997; Seryodkin et al.

2013). Though these studies, along with numerous

others, have applied telemetry methods to various

facets of wildlife research, telemetry specific errors

have often been left out of the literature. Confidence

ellipses combined with landscape metrics provided an

approach to quantify the amount and spatial structure

for how species use a landscape at a particular point in

time. We have used this information to look at

individual locations and analyze patterns of land

cover data using wild turkeys as a model species. The

approach we used was based on field data from 2004

and 2005 (Ramirez et al. 2012) to estimate home

ranges, but that study did not include land cover

information. Incorporating remote sensing data from

2004 allowed us to gain new insights on how land

cover patterns influenced habitat use. Telemetry

studies are often conducted with point data, which

only captures the landscape characteristics in a single

spot. Instead, by using confidence ellipses to look at

landscapes around the location identified with teleme-

try, we are able to provide a proxy for how species use

the landscape, which may be the first step in under-

standing historical datasets where field data and

remote sensing information are available in order to

quantify available areas of species-specific habitat for

various wildlife species. The methods that we used are

not only relevant to our studied species, but by

understanding how landscape sampling shape will

affect the inference of metric variables, we can re-

analyze decades of wildlife data to understand how

spatial patterns used by species have changed over

time.

Conclusion

Landscape simulations facilitated our understanding

of how landscape sampling strategies may be affected

by sampling shape models. The integration of teleme-

try data from wildlife with landscape ecology

approaches and remote sensing were important in

identifying land cover spatial patterns around wild

turkey locations in South Texas. The approaches used

in this study can be applied to historical datasets where

field data and remote sensing information are available

in order to gain further insights into land cover patterns

used by wildlife species.
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